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S1. Some reflections on the conditional and semi-empirical resolving power theory 

Even though the conditional and semi-empirical resolving power models represent major steps in the 

development of the theory of ion mobility separations, it is important to realize and point out some 

of their shortcomings. These drawbacks stem from the fact that these models are built upon the 

application of full-width-at-half-maxima and the summation of 𝑤ℎ
2. In case of the conditional 

resolving power theory, it leads to the overestimation of the injection pulse-width’s contribution, 

while in case of the semi-empirical model this approach gave rise to some confusion regarding the 

optimal value of the correction factors (most prominently that of β). In contrast to the two 

aforementioned theories, the plate-height model rests on the addition of variances. The pillar of 

plate-height models is a fundamental statistical law: when the individual dispersion processes act 

independently, the variances add linearly (variances corresponding to independent or uncorrelated 

random variables are additive)1. This theorem is true for variances, but does not hold generally for 

the square of full-width-at-half-maxima, implying the inherent problem of the conditional resolving 

power theory and every model that is based on the addition of 𝑤ℎ
2. 

Let us illuminate this problem with the help of a simple example, considering the addition of two, 

completely identical rectangular distributions. Assume that the width of the uniform distributions at 

the base is unity and, consequently, 𝑤ℎ
2 = 1. The sum will be a symmetric, triangular function whose 

width at the baseline equals 2. Being an isosceles triangle, 𝑤ℎ  and 𝑤ℎ
2 will be 1. Clearly, 𝑤ℎ

2 does not 

appear as an additive quantity, because the sum of the uniform distributions’ 𝑤ℎ
2  does not equal the 

𝑤ℎ
2 of their sum (1 + 1 ≠ 1). Detailed, step-by-step solution of the above and other similar problems 

regarding the addition of various distributions can be found in statistics textbooks, and the reader is 

referred to them in case of further interest in the topic2. 

The only situation where 𝑤ℎ
2 values add linearly is when exclusively normal distributions are added 

together, because the sum will also be Gaussian. It was pointed out also by Revercomb and Mason in 

their classic paper3. In other words, the shape of the distribution and the relation between variance 

and 𝑤ℎ
2 is maintained upon convolution (unlike in the above example, where the sum of two uniform 

functions appears to be triangular, meaning that the aforementioned relation between σ2 and 𝑤ℎ
2 

necessarily changes). It is a consequence of the central limit theorem of statistics: the sum of 

independent random variables converges toward a Gaussian, where the mean and the variance of 

the resulting distribution is given as the sum of the means and the variances of the individual 

variables, respectively2. Although the overall peak shapes (the ATDs) converge toward a normal 

distribution in DTIM-MS, it does not mean that each and every dispersion process leads to Gaussian 

zone spreading. Indeed, the initial distribution of the ion packets is generally described as a 

rectangular function. As a consequence, the addition of 𝑤ℎ
2 values will lead to an overestimation of 

the contribution of processes associated with rectangular zone spreading. 

Unlike in the conditional resolving power theory, the figures of merit in the plate-height model are 

derived from the variances either directly, such as in case of HETP and N, or indirectly, as in case of 

Rp. Although traditionally not employed within the plate-height concept, resolving power is the 

preferred figure of merit in the IMS and IM-MS communities. To conform to this general practice, Rp 

was incorporated into the plate-height model of IM-MS, as explained in Section 1.1. Briefly, the 

resolving power limit corresponding to a given dispersion process that is characterized by a non-

Gaussian distribution can be obtained by calculating the FWHM of a Gaussian that has the very same 

variance as the distribution in question, and then deriving the Rp limit from the full-width-at-half-

maximum of this virtual Gaussian. 
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In other words, by employing Eq. 4 to calculate Rp from N, the definition of the latter being based on 

σ2. This ensures that all figures of merit in the plate-height model are additive after being raised to 

the appropriate power – σ2, HETP, 
1

𝑁
  and 𝑅𝑝

−2. 

The above approach breaks down only if the overall peak shape (the ATD) ceases to be Gaussian. If 

very long injection pulses are applied, diffusion and other dispersion processes and random events in 

the drift cell might not be able to turn the initial rectangular distribution into a zone that is 

sufficiently close to a Gaussian. In such a case, approximating the ATD with a normal distribution 

would lead to errors in the determination of the separation efficiency. Thus, the distribution of ions 

should be obtained using error functions and often numerical methods3,4. The simple, general 

relation between variance and 𝑤ℎ
2 that exists for Gaussians could not be applied. The 

aforementioned relation would vary with changing peak shapes, making its determination laborious. 

Fortunately, such situations rarely arise in IM-MS under common operating conditions (see the 

relative contribution of the individual dispersion processes in Figure 2), and the Gaussian 

approximation can be used within satisfying accuracy. 
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S2. Diffusion 

The spatial variance generated due to diffusional broadening is given as: 

 

Here, D is the (longitudinal) diffusion coefficient of the ion, while td is the drift time, the time 

available for the ions to spread due to diffusion. Ion clouds move in the drift tube with a constant 

velocity that is proportional to the electric field strength (Ed), the proportionality factor being the 

mobility of the ion: 

 

In Eq. S2 Vd is the drift voltage (the electric potential difference between the two ends of the drift 

tube) and Ld is the length of the drift cell. Thus, the drift time appears as: 

 

We mention here that in CZE, where the distance between the electrodes and the distance between 

the injection and detection region can be different, the fraction 
𝑉

𝐸
 does not necessarily equal the 

product 𝑣𝑡, complicating the corresponding equations. In comparison, the situation in DTIMS is 

rather simple, as the two distances are exactly the same – the length of the drift tube. Therefore, 

they do not need to be treated separately in Eq. S3. Combining Eq. S1 and S3 yields: 

      

The Nernst-Townsend-Einstein relation links the mobility of an ion to its diffusion coefficient in the 

same medium (where T is the absolute temperature, q is the charge of the ionic species and kB is the 

Boltzmann constant): 

 

 

With the help of Eq. S5 we can express diffusion-related variance for IMS in a more meaningful form: 

 

It needs to be emphasized that the two above quantities are not equal, neither regarding their 

numerical values, nor their units. Eq. S6a refers to a spatial quantity, while Eq. S6b expresses variance 

in the time domain. Based on the above expressions of variance, the diffusion limit of plate number 

and resolving power can be finally given: 

 

  

(𝑆1) 𝜎𝐿;𝑑𝑖𝑓𝑓
2 = 2𝐷𝑡𝑑 

(𝑆2) 𝑣𝑑 = 𝐾𝐸𝑑 =
𝐾𝑉𝑑

𝐿𝑑
 

(𝑆3) 𝑡𝑑 =
𝐿𝑑

2

𝐾𝑉𝑑
 

(𝑆4) 𝜎𝐿;𝑑𝑖𝑓𝑓
2 = 𝐿𝑑

2
2𝐷

𝐾𝑉𝑑
 

(𝑆6𝑎) 𝜎𝐿;𝑑𝑖𝑓𝑓
2 = 𝐿𝑑

2
2𝐷

𝐾𝑉𝑑
= 𝐿𝑑

2
2𝑘𝐵𝑇

𝑞𝑉𝑑
 (𝑆6𝑏) 𝜎𝑡;𝑑𝑖𝑓𝑓

2 = 𝑡𝑑
2

2𝐷

𝐾𝑉𝑑
=  𝑡𝑑

2
2𝑘𝐵𝑇

𝑞𝑉𝑑
 

(𝑆7) 𝑁𝑑𝑖𝑓𝑓 =
𝐾𝑉𝑑

2𝐷
=

𝑞𝑉𝑑

2𝑘𝐵𝑇
 

(𝑆8) 𝑅𝑝;𝑑𝑖𝑓𝑓 = (
𝐾𝑉𝑑

16𝐷𝑙𝑛2
)

1/2

= (
𝑞𝑉𝑑

16𝑘𝐵𝑇𝑙𝑛2
)

1/2

 

 (𝑆5) 𝐾 =
𝐷𝑞

𝑘𝐵𝑇
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S3. Coulomb repulsion 

S3.1. Rate of expansion due to Coulombic forces 

To account for space charge effects, let us consider a spherical cloud of ions expanding freely without 

having to overcome any kind of barrier, following the calculations of Tolmachev et al5. The driving 

force of this spatial dispersion is the force exerted by the electric field on the ions located at the edge 

of the ion cloud. This electric field is the result of the ions’ own charge, and is given by Gauss’s law 

for electrostatics, which relates the electric flux (the surface integral of the electric field) to the total 

charge enclosed in a closed surface. In case of a spherical ion packet, Gauss’s law can be written in 

the following simple form due to symmetry reasons: 

(𝑆9) 𝐸𝐶𝑙𝑚𝑏 =
𝑄

𝐴𝑠𝑝ℎ𝑒𝑟𝑒𝜀0
=

𝑄

4𝜋𝑟2𝜀0
 

In Eq. S9 Q is the total charge enclosed by the surface of the spherical ion cloud (Asphere) with a radius 

of r, and ε0 is the vacuum permittivity (approximating the permittivity of the buffer gas in the 

mobility cell). As shown by Eq. S9, the electric field strength on the surface of the ion cloud is 

independent of the ion density distribution, as long as spherical symmetry is maintained. EClmb is 

merely the function of permittivity, the total charge and the area of the sphere this charge is 

confined into. 

The speed of the ion cloud’s radial expansion (vClmb) is given as: 

(𝑆10) 𝑣𝐶𝑙𝑚𝑏 =
𝑑𝑟

𝑑𝑡
= 𝐾𝐸𝐶𝑙𝑚𝑏  

Substituting Eq. S9 into Eq. S10 results in a first-order differential equation: 

(𝑆11) 
𝑑𝑟

𝑑𝑡
= 𝐾

𝑄

4𝜋𝑟2𝜀0
 

By solving Eq. S11 we obtain the following formula: 

(𝑆12) 𝑟(𝑡) = (
3𝐾𝑄

4𝜋𝜀0

(∆𝑡 + 𝑡0))

1 3⁄

 

In Eq. S12 r(t) is the total radius of the ion cloud, Δt is the time elapsed since the start of its 

Coulomb-driven expansion, i.e. the time since injection, whereas t0 is the constant of integration. The 

latter can be calculated from the initial radius of the injected ion cloud: 

(𝑆13) 𝑡0 = 𝑟0
3

4𝜋𝜀0

3𝐾𝑄
 

Although Eq. S12 shows that dispersion due to Coulomb repulsion cannot be completely decoupled 

from the injection pulse-width (reflecting the role of charge-density rather than that of the total 

charge), for simplicity and in order to address each dispersion process independently, we only deal 

with Δt in the following calculations and assume t0 to be zero. The role of the initial finite size of the 

ion cloud is addressed in detail in a separate chapter. The change of the radius due to space-charge 

effects in this case is expressed in the following explicit form: 

(𝑆14) ∆𝑟 = (
3𝐾𝑄

4𝜋𝜀0
∆𝑡)

1 3⁄
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The next step is to relate spatial variance resulting from Coulomb-driven dispersion (𝜎𝐿;𝐶𝑙𝑚𝑏
2 ) to the 

total change in the radius or volume of the expanding ion cloud. Let us denote the total change in 

radius (Δr)  and volume (ΔV) as rfull and Vfull, respectively, when ∆t equals td (the relation between 

the two being 𝑉𝑓𝑢𝑙𝑙 =
4

3
𝜋𝑟𝑓𝑢𝑙𝑙

3 ). In the model employed herein – a freely extending ion packet that 

keeps its spherical symmetry – expansion along each spatial dimension is equal (∆𝑥 = ∆𝑦 = ∆𝑧 =

∆𝑟). It also means that the total variance is evenly distributed among the three spatial dimensions 

(𝜎𝑥
2 = 𝜎𝑦

2 = 𝜎𝑧
2 = 𝜎𝐿;𝐶𝑙𝑚𝑏

2 ). Thus, the spatial variance generated during the whole separation along 

the axis of the drift cell (𝜎𝐿;𝐶𝑙𝑚𝑏
2 ) will be directly proportional to 𝑟𝑓𝑢𝑙𝑙

2  and to 𝑉𝑓𝑢𝑙𝑙
2 3⁄

, while the 

corresponding spatial width of the distribution (2𝜎𝐿;𝐶𝑙𝑚𝑏) will be proportional to 𝑟𝑓𝑢𝑙𝑙  and 𝑉𝑓𝑢𝑙𝑙
1 3⁄

. 

S3.2. Relating spatial variance to the size of the ion cloud: the case of the 

uniformly populated sphere 

The previous section explored the expansion of ion clouds due to space charge effects, following the 

approach of Tolmachev and co-workers5. In the aforementioned excellent study, the authors 

employed these equations to derive the Coulomb limited resolving power in accordance with the 

formalism of the conditional resolving power theory, inheriting the drawbacks of this FWHM-based 

model. To obtain the appropriate figures of merit in the plate-height model, such as the Coulomb 

limited resolving power or theoretical plates, one has to find the variance that is generated by this 

dispersion process. Herein, we present a method employing statistical moment analysis to relate 

𝑟𝑓𝑢𝑙𝑙
2  to 𝜎𝐿;𝐶𝑙𝑚𝑏

2 , allowing for the incorporation of space charge effects into the plate-height model of 

IM-MS. 

So far the only criterion regarding the spatial arrangement of ions was a spherical symmetry. 

However, to obtain the relation between 𝑟𝑓𝑢𝑙𝑙
2  and 𝜎𝐿;𝐶𝑙𝑚𝑏

2  a suitable constant is needed that reflects 

the distribution of ions within the cloud: 

(𝑆15) 𝜎𝐿;𝐶𝑙𝑚𝑏
2 = 𝐶𝐶𝑙𝑚𝑏  𝑟𝑓𝑢𝑙𝑙

2  

CClmb can be obtained from the probability density function (PDF) that describes the distribution of 

ions along the z-coordinate, corresponding to the axis of the mobility cell. Tolmachev et al. 

considered a uniformly populated sphere as a possible scenario, where the distance between 

neighboring ions is irrespective of their position within the cloud, i.e. the ion density is constant and 

does not change during the separation (this case must not be confused with a uniform, also called 

rectangular distribution)5. This case was chosen as a starting point for the calculations below to 

explore the issue highlighted in Eq. S15, although with the aim of obtaining the variance instead of 

the full-width-at-half-maximum of the distribution. 

Let us consider an ion cloud that moves along the z-axis with constant velocity and generates a signal 

upon hitting the detector that is situated in the x,y-plane. The signal intensity is proportional to the 

number of ions hitting a detector per unit time. In case of a uniformly populated sphere, therefore, it 

is proportional to the area of the circle that is cut out from the sphere by the plane of the detector. 

The density function of the resulting distribution is given by the disk integral of the sphere: 

(𝑆16) 𝜋 ∫ (𝑟𝑓𝑢𝑙𝑙
2 − 𝑧2) 𝑑𝑧

+𝑟𝑓𝑢𝑙𝑙

−𝑟𝑓𝑢𝑙𝑙

=
4

3
𝜋𝑟𝑓𝑢𝑙𝑙

3  

In the above expression z is the distance between the center of the sphere and the plane of the 

detector along the axis of the drift cell (the axis being perpendicular to the plane of the detector). 
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The integral equals the volume of the sphere with a radius of rfull, in accordance with the fact that 

the area should be proportional to the total number of ions within the cloud. The probability density 

function (PDF) can be obtained upon normalization of the density function (Eq. S16): 

(𝑆17) 𝐴𝜋 ∫ (𝑟𝑓𝑢𝑙𝑙
2 − 𝑧2) 𝑑𝑧 = 1

+𝑟𝑓𝑢𝑙𝑙

−𝑟𝑓𝑢𝑙𝑙

 

The normalizing constant A appears as: 

(𝑆18) 𝐴 =
3

4𝜋𝑟𝑓𝑢𝑙𝑙
3  

 

Figure S1. Graphical representation of the quadratic probability density function corresponding to a uniformly 
populated sphere with a radius of rfull. 

Since the above quadratic distribution is symmetric with respect to the mean, the central moment of 

first order (the expected value, μ, not to be confused with the reduced mass) is zero: 

(𝑆19) 𝜇 = 𝐴𝜋 ∫ 𝑧 (𝑟𝑓𝑢𝑙𝑙
2 − 𝑧2) 𝑑𝑧

+𝑟𝑓𝑢𝑙𝑙

−𝑟𝑓𝑢𝑙𝑙

= 0 

Therefore, the variance (central moment of second order) can be calculated as: 

(𝑆20) 𝜎𝐿;𝐶𝑙𝑚𝑏
2 = 𝐴𝜋 ∫ 𝑧2 (𝑟𝑓𝑢𝑙𝑙

2 − 𝑧2) 𝑑𝑧

+𝑟𝑓𝑢𝑙𝑙

−𝑟𝑓𝑢𝑙𝑙

=
𝑟𝑓𝑢𝑙𝑙

2

5
 

The above equation (together with Eq. S15) shows that CClmb in case of a uniformly populated sphere 

(quadratic distribution) equals 
1

5
. 

Tolmachev et al. considered the very same quadratic probability density function (Eq. S17 and Figure 

S1). Instead of calculating the variance, however, the full-width-at-half-maximum (FWHM) of the 

quadratic distribution was used to obtain a proportionality factor5. This factor (termed CS, keeping 

the original notation to make clear distinction from CClmb) was defined as the ratio between the 

FWHM of the density function and its width at the baseline (the diameter of the sphere). For a 

uniformly populated sphere CS appeared to be 
1

√2
. The FWHM value obtained by this approach was 

used to calculate the Coulomb limit of resolving power. 
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S3.3. Relating spatial variance to the size of the ion cloud: the case of 

arbitrary ion distributions 

In the previous section statistical moment analysis was employed to obtain a factor that relates 

𝜎𝐿;𝐶𝑙𝑚𝑏
2  to the size of the ion cloud, considering a uniformly populated sphere. However, the uniform 

radial distribution of ions inside the sphere – resulting in the quadratic functions of Eq. S16 and Eq. 

S17 – is only one of the many potential scenarios. One can imagine situations where the distance 

between the ions within the sphere and the radial distribution function is not constant. Besides 

varying in space, the distribution of ions also changes in time, complicating the description of space 

charge effects. 

The initial distribution of ions at the beginning of the ion mobility separation is generally associated 

with a rectangular function. This rectangular distribution will evolve in the course of the separation 

not only due to diffusion, but also due to the mutual repulsion between ions. Although thermal 

energies exceed those associated with the space charge under conditions that are typical in IMS and 

IM-MS, Coulombic forces still have some influence6. In the plate-height model it is assumed for the 

sake of simplicity that diffusion and Coulombic forces act independently. Let us realize that 𝜎𝐿;𝐶𝑙𝑚𝑏
2  is 

based on multiple estimations: the number of charges is not determined accurately in everyday 

measurements and the ion clouds do not have perfect spherical symmetry. Thus, modelling the 

evolution of the ions’ radial distribution during ion mobility separations due to space charge effects 

would bring little gain in the accuracy of calculating the suitable variances within this model. 

Therefore, we may consider different, realistic and justifiable distributions and calculate the 

corresponding CClmb without introducing significant errors. In case of a rectangular (continuous 

uniform) distribution, CClmb is equal to 
1

3
, while for a Gaussian distribution CClmb appears as 

1

4
. In the 

present study a rectangular distribution is considered for all calculations, in accordance with the 

initial rectangular distribution of the ion packet (keeping in mind that it will actually change in the 

course of the separation). 

Although finding a suitable factor that relates 𝜎𝐿;𝐶𝑙𝑚𝑏
2  to 𝑟𝑓𝑢𝑙𝑙

2  is important, the rate of expansion of 

ion clouds is irrespective of the ions’ distribution within the ion cloud (as mentioned before in 

relation to Eq. S13 and Eq. S14). Therefore, the most essential and practically relevant findings 

related to Coulomb-driven dispersion – such as NClmb and Rp;Clmb being independent of the absolute 

values of transport properties – are unaffected by the actual value of CClmb. 
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S3.4. Coulomb limit of theoretical plates and resolving power 

By combining Eq. S14 and S15, spatial and temporal variance generated during the whole separation 

(∆𝑡 = 𝑡𝑑) can be given in the following explicit forms: 

(𝑆21𝑎) 𝜎𝐿;𝐶𝑙𝑚𝑏
2 = 𝐶𝐶𝑙𝑚𝑏 (

3𝐾𝑄

4𝜋𝜀0
𝑡𝑑)

2 3⁄

= 𝐶𝐶𝑙𝑚𝑏 (
3𝑄

4𝜋𝜀0𝑉𝑑
𝐿𝑑

2 )
2 3⁄

 

(𝑆21𝑏)  𝜎𝑡;𝐶𝑙𝑚𝑏
2 = 𝐶𝐶𝑙𝑚𝑏 (

3𝑄

4𝜋𝜀0𝑉𝑑𝐿𝑑
)

2 3⁄

𝑡𝑑
2 = 𝐶𝐶𝑙𝑚𝑏 (

3𝑄

4𝜋𝜀0𝑉𝑑𝐾𝐸𝑑
𝑡𝑑

2)
2 3⁄

 

Based on the above expressions of variances, the Coulomb- or space charge limit of theoretical plates 

and resolving power can be formulated, analogously to Eq. S7 and Eq. S8 for diffusion: 

(𝑆22) 𝑁𝐶𝑙𝑚𝑏 =
1

𝐶𝐶𝑙𝑚𝑏
(

4𝜋𝜀0𝑉𝑑

3𝑄
𝐿𝑑)

2 3⁄

 

(𝑆23) 𝑅𝑝;𝐶𝑙𝑚𝑏 = (
1

𝐶𝐶𝑙𝑚𝑏  8𝑙𝑛2 
)

1 2⁄

(
4𝜋𝜀0𝑉𝑑

3𝑄
𝐿𝑑)

1 3⁄

 

 

In summary, the effects of Coulomb forces on the resolving power of IMS were addressed above in 

accordance with the method of Tolmachev et al. (apart from calculating the value of CClmb), who 

presented one of the most thorough and comprehensive studies on the subject5. This model is based 

on the unrestricted, free expansion of spherical on clouds. Therefore, spatial variance due to 

Coulomb repulsion along all three spatial dimensions is equal and directly proportional to ∆V2/3 (∆V 

being the change in the volume of the cloud due to Coulombic forces, not to be confused with the 

drift voltage). Several similar approaches – based on Gauss’s law for electrostatics – can be found in 

the literature. Xu et al. considered a different geometry, their model being based on a cylindrical ion 

cloud7. Although the cylinder considered in this study had a finite length (comparable to its 

diameter), the common mathematical solution of Gauss’s law for cylindrical shapes holds for 

infinitely long objects. Consequently, the length of the cylindrical ion cloud is fixed in the 

aforementioned study, meaning that it only expands radially. In other words, the total volume (or 

variance) generated due to Coulomb repulsion is distributed unevenly among the three spatial 

dimensions. The variance associated with Coulomb repulsion is zero along the axis parallel to the 

length of the cylinder, while it is systematically larger along the two remaining axes than in the 

spherical model presented here. It means that the equation 𝜎𝑥
2 = 𝜎𝑦

2 = 𝜎𝑧
2 breaks down. 

Consequently, the Coulomb limit of resolving power appears to be proportional to 𝑉𝑑
1 2⁄

 and to 𝑄−1 2⁄  

(instead of to 𝑉𝑑
1 3⁄

 and to 𝑄−1 3⁄ ), because the spatial variance along the z-coordinate is directly 

proportional to ΔV and not to ∆𝑉2 3⁄ . Furthermore, the dimensionless constants are different as well, 

reflecting a cylindrical geometry instead of a spherical one. Kirk et al. also developed a method to 

estimate the effect of Coulombic forces on the resolving power of ion mobility spectrometers. They 

approximated the shape of the ion cloud in atmospheric pressure IMS by an infinitesimally thin disk 

and solved Gauss’s law for the aforementioned geometry8. This approximation may hold when 

extremely short injection pulses are being applied. 
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S4. Exploring the plate-height equation in detail  

S4.1 Plate-height equation for stand-alone IMS 

As mentioned in Section 4.1, Eqs. 35-37 simplify significantly when only one compartment is 

considered, such as in stand-alone IMS. In this case HETPIMS appears as: 

(𝑆21) 𝐻𝐸𝑇𝑃𝐼𝑀𝑆 =
𝐿𝑑

𝑁𝐼𝑀𝑆
=

𝜎𝐿
2

𝐿𝑑
=

𝑩𝑉𝑑
2

𝐿𝑑
+

𝑪

𝐿𝑑𝑉𝑑
2 3⁄

+
𝑫

𝐿𝑑𝑉𝑑
 

𝑩 =
1

𝐶𝑖𝑛𝑗
(

𝐾𝑡𝑖𝑛𝑗

𝐿𝑑
)

2

                  𝑪 = 𝐶𝐶𝑙𝑚𝑏 (
3𝑄

4𝜋𝜀0
𝐿𝑑

2 𝜃)
2 3⁄

                  𝑫 = 𝐿𝑑
2

2𝑘𝐵𝑇

𝑞
𝜃 

Since only one compartment is present, there is no need for velocity correction. NIMS can be 

calculated accordingly: 

(𝑆22) 𝑁𝐼𝑀𝑆 =
𝐿𝑑

2

𝜎𝐿
2 =

𝐿𝑑

𝐻𝐸𝑇𝑃𝐼𝑀𝑆
=

𝐿𝑑
2

𝑩𝑉𝑑
2 +

𝑪

𝑉𝑑
2 3⁄ +

𝑫
𝑉𝑑

 

Rp;IMS is given by definition as: 

(𝑆23) 𝑅𝑝;𝐼𝑀𝑆 = (
𝑁𝐼𝑀𝑆

8𝑙𝑛2
)

1 2⁄

= (8𝑙𝑛2)−1 2⁄
𝐿𝑑

(𝑩𝑉𝑑
2 +

𝑪

𝑉𝑑
2 3⁄ +

𝑫
𝑉𝑑

)

𝟏 𝟐⁄
 

S4.2 Finding the minimum of the plate-height function 

Let us neglect Coulomb repulsion and consider only diffusion and the width of the injected ion packet 

(as done in the majority of studies in the field): 

(𝑆24) 𝐻𝐸𝑇𝑃𝐼𝑀𝑆 =
𝜎𝐿

2

𝐿𝑑
=

𝑩𝑉𝑑
2 +

𝑫
𝑉𝑑

𝐿𝑑
 

The derivative 𝑑𝐻𝐸𝑇𝑃𝐼𝑀𝑆 𝑑𝑉𝑑⁄  is zero where Eq. S24 has its minimum, i.e. where Vd equals Vd;opt: 

(𝑆25) 
𝑑𝐻𝐸𝑇𝑃𝐼𝑀𝑆

𝑑𝑉𝑑
=

2𝑩𝑉𝑑 −
𝑫
𝑉𝑑

2

𝐿𝑑
 

(𝑆26) 

2𝑩𝑉𝑑;𝑜𝑝𝑡 −
𝑫

𝑉𝑑;𝑜𝑝𝑡
2

𝐿𝑑
= 0 

From Eq. S26 a very simple expression can be derived for Vd;opt: 

(𝑆27) 𝑉𝑑;𝑜𝑝𝑡 = (
𝑫

2𝑩
)

1 3⁄

 

By substituting Eq. S27 into Eq. 24 we can calculate HETPIMS;opt: 
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(𝑆28) 𝐻𝐸𝑇𝑃𝐼𝑀𝑆;𝑜𝑝𝑡 =
3

𝐿𝑑
(

𝑫2𝑩

4
)

1 3⁄

 

Analogously, the number of theoretical plates and resolving power at the optimal voltage appear as: 

(𝑆29) 𝑁𝐼𝑀𝑆;𝑜𝑝𝑡 =
𝐿𝑑

𝐻𝐸𝑇𝑃𝐼𝑀𝑆;𝑜𝑝𝑡
=

𝐿𝑑
2

3
(

4

𝑫2𝑩
)

1 3⁄

 

(𝑆30) 𝑅𝑝;𝐼𝑀𝑆;𝑜𝑝𝑡 = (
𝑁𝐼𝑀𝑆;𝑜𝑝𝑡

8𝑙𝑛2
)

1 2⁄

=
𝐿𝑑

√24𝑙𝑛2
(

2

𝑫√𝑩
)

1 3⁄

 

S4.3 Expressing HETPapp, Napp and Rp;app with temporal variances 

The total temporal variance in DTIM-MS appears as: 

(𝑆31) 𝜎𝑡;𝑡𝑜𝑡𝑎𝑙
2 = 𝑨𝒕 + 𝑩𝒕 +

𝑪𝒕

𝑉𝑑
2 3⁄

+
𝑫𝒕

𝑉𝑑
 

𝑨𝒕 = 2𝐷
𝑡𝑓𝑢𝑛

2

𝐾𝑉𝑓𝑢𝑛
+ 𝐶𝐶𝑙𝑚𝑏 (

3𝑄

4𝜋𝜀0𝑉𝑓𝑢𝑛𝐾𝐸𝑓𝑢𝑛
𝑡𝑓𝑢𝑛

2 )

2 3⁄

         𝑩𝒕 =
𝑡𝑖𝑛𝑗

2

𝐶𝑖𝑛𝑗
 

𝑪𝒕 = 𝐶𝐶𝑙𝑚𝑏 (
3𝑄

4𝜋𝜀0𝐿𝑑
)

2 3⁄

𝑡𝑑
2                                                     𝑫𝒕 = 𝑡𝑑

2
2𝑘𝐵𝑇

𝑞
𝜃 

Let us realize that the temporal variance associated with the injection pulse-width and the post-cell 

region are completely independent of the drift voltage. Based on the expression above, the 

equivalents of Eqs. 35-37 using 𝜎𝑡;𝑡𝑜𝑡𝑎𝑙
2  can be formulated as follows: 

(𝑆32) 𝐻𝐸𝑇𝑃𝑎𝑝𝑝 = 𝐿𝑡𝑜𝑡𝑎𝑙

𝜎𝑡;𝑡𝑜𝑡𝑎𝑙
2

𝑡𝑎
2

(
1

1 − 𝐹
)

2

= (𝐿𝑑 + 𝐿𝑓𝑢𝑛)

𝑨𝒕 + 𝑩𝒕 +
𝑪𝒕

𝑉𝑑
2 3⁄ +

𝑫𝒕

𝑉𝑑

(𝑡𝑑 + 𝑡𝑓𝑢𝑛)
2  

(𝑆33) 𝑁𝑎𝑝𝑝 =
𝑡𝑎

2

𝜎𝑡;𝑡𝑜𝑡𝑎𝑙
2

(1 − 𝐹)2 =
(𝑡𝑑 + 𝑡𝑓𝑢𝑛)

2

𝑨𝒕 + 𝑩𝒕 +
𝑪𝒕

𝑉𝑑
2 3⁄ +

𝑫𝒕

𝑉𝑑

 

(𝑆34) 𝑅𝑝;𝑎𝑝𝑝 = (
𝑁𝑎𝑝𝑝

8𝑙𝑛2
)

1 2⁄

= (8𝑙𝑛2)−1 2⁄
𝑡𝑑 + 𝑡𝑓𝑢𝑛

(𝑨𝒕 + 𝑩𝒕 +
𝑪𝒕

𝑉𝑑
2 3⁄ +

𝑫𝒕

𝑉𝑑
)

1 2⁄
 

It is important to mention that td – present in the terms Ct and Dt, as well as in the denominator of 

S32 and the numerator of Eq. S33 and Eq. S34 – depends on the drift voltage. 
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S5. Experiment vs. theory 

The equivalent of Figure 3 in Section 4.2 is shown below, depicting plate height instead of resolving 

power as a function of the drift voltage: 

 

Figure S2. Plate height in IM-MS – experiment vs. theory. The equivalent of Figure 3, depicting plate height 

instead of resolving power. The effect of A) the buffer gas pressure, B) the injection pulse-width and C) the 

collision cross section of the ions on the apparent effective plate height (HETPapp) is highlighted. Experiments 

were performed in positive ion mode on a custom-built DTIM-MS instrument (Ld = 805.5 mm, Lfun = 144 mm) 

with He as buffer gas at ambient temperature (T = 295.0 ± 0.2 K). The following measurement conditions were 

used as a starting point with the corresponding curve presented in every graph (red, yellow and blue trace in A, 

B and C, respectively): p = 3 mbar, tinj = 150 μs and DTΩHe = 139 Å2 (trisaccharide Na+ adduct). Each of the three 

aforementioned experimental parameters was varied systematically as follows. A) Buffer gas pressure varied in 

three steps: 3 mbar, 4 mbar and 5 mbar. B) Injection pulse-width varied in three steps: 50 μs, 100 μs and 150 μs. 

C) Collision cross section (influencing the mobility of the ions) varied in three steps: DTΩHe = 74 Å2 (protonated 

12-crown-4), 139 Å2 (trisaccharide Na+ adduct) and 270 Å2 (TBAI trimer). Calculations were performed according 

to Eq. 35, considering a rectangular injection profile (Cinj = 12), ion clouds with a charge of Q = 100 000 e (CClmb = 
1

3
, continuous uniform distribution) and a completely homogeneous electric field (θ = 1). 
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An additional set of experiments – similar to that imaged in Figure 3 and Figure S2 – was performed 

to test the plate-height model. The tetrabutylammonium iodide trimer cation served as the central 

species for the comparative analysis displayed below: 

 

Figure S3. Experiment vs. theory – Part II. The effect of A) the buffer gas pressure, B) the injection pulse-width 

and C) the collision cross section of the ions on the apparent effective resolving power (Rp;app) is highlighted. 

Experiments were performed in positive ion mode on a custom-built DTIM-MS instrument (Ld = 805.5 mm, Lfun 

= 144 mm) with He as buffer gas at ambient temperature (T = 295.0 ± 0.2 K). The following measurement 

conditions were used as a starting point with the corresponding curve presented in every graph (blue, blue and 

yellow trace in A, B and C, respectively): p = 4 mbar, tinj = 150 μs and DTΩHe = 270 Å2 (TBAI trimer cation [(TBA)3I2]+). 

Each of the three aforementioned experimental parameters was varied systematically as follows. A) Buffer gas 

pressure varied in two steps: 3 mbar and 4 mbar. B) Injection pulse-width varied in four steps: 100 μs, 150 μs, 

200 μs and 250 μs. C) Collision cross section (influencing the mobility of the ions) varied in three steps: DTΩHe = 

74 Å2 (protonated 12-crown-4), 139 Å2 (trisaccharide Na+ adduct) and 270 Å2 (TBAI trimer). Calculations were 

performed according to Eq. 37, considering a rectangular injection profile (Cinj = 12), ion clouds with a charge of 

Q = 100 000 e (CClmb = 
1

3
, continuous uniform distribution) and a completely homogeneous electric field (θ = 1). 

The plate-height model is again capable of reproducing experimental results with satisfying accuracy, 

which provides further validation of the underlying theory. 

S6. Linear drift tube ion mobility separations in a spreadsheet 

To facilitate the straightforward test and utilization of the plate-height model, we provide a 

spreadsheet template in a widely accessible and transparent file format. The spreadsheet may be 

used as provided to calculate the achievable N, HETP and Rp in ion mobility separations after 

choosing appropriate input parameters specific for the researcher’s experimental setup, or serve as 

the basis for writing more convenient programs for the same purpose. The spreadsheet is provided 

as part of the Electronic Supplementary Material. 
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