Electronic Supplementary Information

An N-linked disalicylaldehyde together with its caesium ion and dichloromethane sensing performances: 'Dual key & lock' LMCTenhanced fluorescence strategy

Kun Zhang,* Ting-Ting Chen, Yin-Jing Shen, Zhuo-Ran Yang, Yan Huang, Shishen Zhang, Jiadan Xue and Benxia Li

Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Higher Education District, Hangzhou 310018, P. R. China

Tables

Table S1 Crystal data and structural refinements for complexes H₂Q_i.

Compound	H ₂ Q _j			
Empirical formula	C ₂₃ H ₁₉ Cl ₂ NO ₄			
Formula weight	444.29			
Temperature / K	293(2)			
Wavelength / Å	0.71073			
Crystal Size (mm)	0.27×0.32×0.36			
Crystal system	Triclinic			
Space group	Pī			
<i>a</i> / Å	9.355(1)			
b / Å	10.350(1)			
<i>c</i> / Å	12.187(1)			
α/°	65.857(2)			
β / °	87.964(3)			
γ/°	84.847(3)			
V / Å ³	1072.4(2)			
Z/D_{calcd} (g / cm ³)	2 / 1.376			
F(000)	460			
μ / mm ⁻¹	0.332			
h_{\min} / h_{\max}	-12 / 12			
k_{\min} / k_{\max}	-13 / 13			
l_{\min} / l_{\max}	-15 / 15			
Data / parameters	4945 / 273			
$R_1, \mathbf{w}R_2 [I > 2\sigma(I)]^a$	$R_1 = 0.0795, wR_2 = 0.2243$			
R_1 , w R_2 (all data) ^{<i>a</i>}	$R_1 = 0.1411, \ \mathrm{w}R_2 = 0.2638$			
S	1.03			
Max/min $\Delta \rho$ /e Å ⁻³	0.81 / -0.55			

^{*a*} $R_1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo|, wR_2 = [\Sigma [w(Fo^2 - Fc^2)^2] / \Sigma w(Fo^2)^2]^{1/2}$

Bond distances		Bond angles	
H ₂ Q _j			
Cl1–C4	1.743(5)	C8-N1-C17	111.3(3)
Cl2-C12	1.758(5)	C9-N1-C17	109.8(3)
O1C1	1.192(6)	C8-N1-C9	109.2(3)
O2–C7	1.341(6)	01	125.1(6)
O3–C15	1.301(5)	Cl1-C4-C5	118.9(3)
O4–C16	1.126(6)	Cl1-C4-C3	120.4(3)
N1-C8	1.471(5)	O2–C7–C6	120.5(3)
N1-C9	1.478(4)	O2–C7–C2	119.7(3)
N1-C17	1.473(5)	N1-C8-C6	111.5(3)
		N1-C9-C10	113.0(3)
		Cl2-C12-C13	120.6(4)
		Cl2-C12-C11	119.5(4)
		O3-C15-C14	121.2(4)
		O3-C15-C10	118.5(4)
		O4C16C14	125.8(5)
		N1-C17-C18	113.2(3)

Table S2 Selected bond distances (Å) and angles (°) in complexes $H_2Q_j.$

Symmetry codes: ^a, 2–*x*, –*y*, 1–*z*; ^b, 1–*x*, 1–*y*, –*z*; ^c, *x*, –*y*, *z*.

Table S3 Hydrogen bonding parameters (Å, $^{\circ}$) in macrocyclic complexes H₂Q_j.

D–H…A	D–H	Н…А	D····A	∠DHA	Symmetry code
H_2Q_j					
O2−H2…N1	0.82	1.92	2.648(4)	148	
O3–H3…O4	0.82	1.91	2.626(5)	145	

Fig. S1 1 H NMR spectrum of dialdehyde H_2Q_j in CDCl₃.

Fig. S2 FT-IR spectrum of the dialdehyde compound H_2Q_j .

Fig. S3 Absorption spectra of dialdehyde H_2Q_j ([M] = 50 μ M) in CH₃OH at room temperature.

Fig. S4 ESI-MS (positive) of H_2Q_j in CH₃OH together with inserted experimental (**a**) and simulative (**b**, calculation for $[C_{23}H_{19}Cl_2NO_4]$) peaks of isotopic distribution corresponding to the peak at m/z = 444.08.

Fig. S5 The fluorescence (**a**) and absorption (**b**) spectra of compound H_2Q_j ([M] = 50 μ M) with excessive alkali metal ions ([M] = 5 mM) in CH₃OH at room temperature.

Fig. S6 Time-dependent fluorescences (λ_{em} = 507 nm) of H_2Q_j with Cs^+ (a) and CH_2Cl_2 (b).

Fig. S7 Fluorescence (**a** and **c**) and absorption (**b** and **d**) spectra for H_2Q_j ([M] = 50 μ M) and its Cs⁺ mixture (H_2Q_j -Cs⁺, [H_2Q_j] = 50 μ M and [Cs⁺] = 5 mM), respectively, in various solvents with 5% (ν/ν) CH₃OH at the room temperature.

Fig. S8 Changes of emission intensity ($\lambda_{em} = 502 \text{ nm}$) in DMSO (**a**) and CH₃OH (**c**) with inserted linear calibration curve between the (I₀-I)/I₀ and CH₂Cl₂ content. Absorption variations and the plot of (A₀-A) vs CH₂Cl₂ content at 418 nm (**b**) in DMSO and 342 nm (**d**) in CH₃OH.

Fig. S9 The ESI-MS (positive) of H_2Q_j with excessive Cs⁺ in CH₃OH together with the inserted experimental (**a**) and simulative (**b**, calculation for $[C_{49}H_{51}Cl_4N_2O_{13}Cs_2]$) peaks of isotopic distribution corresponding to the peak at m/z = 1284.41.

Fig. S10 The ESI-MS (positive) of H_2Q_j with excessive Cs⁺ in CH₃OH-CH₂Cl₂ ($\nu/\nu = 1:1$) together with the inserted experimental (**a** and **b**) and simulative (**c** and **d**, calculation for $[C_{25}H_{27}Cl_2NO_6K]$ and $[C_{46}H_{38}Cl_4N_2O_8Na]$, respectively) peaks of isotopic distribution corresponding to the peaks at m/z = 547.11 and 912.12.

Fig. S11 Benesi-Hildebrand analysis of sensor H_2Q_j at different Cs⁺ concentrations (0.50–100.0 M).

Fig. S12 The absorption spectra of H_2Q_j (**a**) ([M] = 100 μ M) and H_2Q_j -Cs⁺ mixture (**b**) ([H_2Q_j] = 100 μ M and [Cs⁺] = 100 mM) under different pH values (pH = 1–14) in CH₃OH at room temperature.