
1

Deep learning networks for the recognition and quantitation of

surface-enhanced Raman spectroscopy

Shizhuang Wenga,*, Hecai Yuana, Xueyan Zhanga, Pan Lib, Ling Zhenga,*, Jinling
Zhaoa, Linsheng Huanga

aNational Engineering Research Center for Agro-Ecological Big Data Analysis &

Application, Anhui University, Hefei 230601, China.

bCenter of medical physics and technology, Hefei institutes of physical science, CAS,

Hefei 230021, China.

Supporting Information:
The similarity of the spectrum is significant for modelling analysis. Mean Euclidean

distance (M_Ed) was used to evaluate the similarity of spectra in each type. First, the
intensity of spectrum was normalize to 0-1. Then, M_Ed between spectra in each type
was calculated for each dimension according to the following equation.

 (1)

2
, ,

=1 1
()

_
*

K N

j i j i
j i

x x
M Ed

N K

Where N was the dimension of spectra, and K was the number of spectra in each type.

was the intensity of the j-th spectra at the i-th dimension, was the mean value ,j ix
,j ix

of in each type. The closer the value of M_Ed was to 0, the higher similarity data ,j ix

set was.
From Table S1 and Table S2, the M_Ed of spectra in recognition of drugs in urine

was 0.0164 to 0.0316, and the M_Ed of spectra in quantitation of pirimiphos-methyl in
wheat extract was 0.0255 to 0.0480, indicating the spectra were of high similarity.

Table S1. Similarity of data in recognition of drugs in urine.
Type of spectra M_Ed

Raw urine 0.0222
Urine samples with10 mg/L MDMA 0.0164
Urine samples with 50 mg/L MDMA 0.0245

Urine samples with 25 mg/L MAMP and 25 mg/L MDMA 0.0316
Urine samples with10 mg/L MAMP 0.0208
Urine samples with 50 mg/L MAMP 0.0236

Electronic Supplementary Material (ESI) for Analyst.
This journal is © The Royal Society of Chemistry 2020

2

Table S2. Similarity of spectra in quantitation of pirimiphos-methyl in wheat extract.
Type of spectra M_Ed

Wheat extract solution with 25 mg/L pirimiphos-methyl 0.0370
Wheat extract solution with 10 mg/L pirimiphos-methyl 0.0480
Wheat extract solution with 5 mg/L pirimiphos-methyl 0.0336

Wheat extract solution with 2.5 mg/L pirimiphos-methyl 0.0407
Wheat extract solution with 1 mg/L pirimiphos-methyl 0.0340

Wheat extract solution with 0.5 mg/L pirimiphos-methyl 0.0255
Wheat extract solution with 0.2 mg/L pirimiphos-methyl 0.0303

Performance of deep learning networks heavily depended on the parameter
optimization. The architecture of CNNs was derived from LeNet-5 in our study. 1) For
CNNs in classification, the activation and optimization functions became Relu and
Rmsprop, and the activation function of the final output layer was Softmax. The
number of epochs and batch_size (16, 32 and 64) was changed to make the networks
train fully. 2) Then, the learning rate (0.0001, 0.001, 0.1 and 1) and the number of
network nodes were tuned for the better results. 3) After the above parameters
optimization, the number of network layer was increased or reduced for improving the
performance of networks furtherly. 4) To prevent the overfitting, the
BatchNormlization was generally added behind the network layer. The above steps
were cycled in order until the performance of CNNs reaches stable. For CNNs in
regression, the activation function of the last layer was omitted, but the hyperparameter
optimization was same.

The architecture of FCNs was derived from CNNs. The pooling and the full
connection layer were replaced by the convolution layer in FCNs. Global average
pooling was used to connect features and outputs (category or concentration). The
optimization of hyperparameters was basically consistent as CNNs. The architecture of
PCANet was fixed, and a small number of parameters could be adjusted one by one.

Parameter setting of classification models:
The parameter settings for the FNN, CNNa, FCNa, PCANea

KNN, PCANeta
RF,

PCANeta
SVM, CNNb, FCNb, PCANetb

KNN, PCANetb
RF, PCANetb

SVM, KNN, RF and
SVM models with raw spectra were displayed in Table S3.
Table S3. Parameter setting of different classification models.

Methods Parameters

FNN

Dense_1:1024, Relu; Dense_2: 512, Relu; Dense_3: 32, Relu; Dense_4: 6, SoftMax;

optimizer=optimizers.rmsprop(lr=0.0001), loss='categorical_crossentropy',

metrics=['accuracy'], batch_size=64, epochs=90

CNNa

Conv_1:32,1×3,Relu; Max-pooling: 1×2, stride=(1,2); BatchNormalization

Conv_2:64,1×3,Relu; Max-pooling: 1×2, stride=(1,2); BatchNormalization
Dense_1:32, Relu; Dense_2:6, SoftMax

optimizer=optimizers.rmsprop(lr=0.0001), loss='categorical_crossentropy',

metrics=['accuracy'], batch_size=64,epochs=60

FCNa Conv_1:32,1×3,Relu; Conv_2: 32, 1×2, stride=(1,2), Relu; BatchNormalization

javascript:;
javascript:;

3

Conv_3:64,1×3,Relu; Conv_4: 64, 1×2, stride=(1,2), Relu; BatchNormalization

Conv_5:32,1×1,Relu; GlobalAveragePooling2D; Dense_1:6, SoftMax
optimizer=optimizers.rmsprop(lr=0.0001), loss='categorical_crossentropy',

metrics=['accuracy'], batch_size=64,epochs=60

PCANeta
KNN

filter_shape_l1= (1,3), step_shape_l1= (1,2), n_l1_output=3,

filter_shape_l2= (1,4), step_shape_l2= (1,4), n_l2_output=3,

filter_shape_pooling=1, step_shape_pooling=1

n_neighbors=1

PCANeta
RF

filter_shape_l1=(1,3), step_shape_l1=(1,2), n_l1_output=3,

filter_shape_l2=(1,4), step_shape_l2=(1,4), n_l2_output=3,

filter_shape_pooling=1, step_shape_pooling=1

'max_depth': None,'max_features': 'auto', 'n_estimators': 10,

PCANeta
SVM

filter_shape_l1=(1,3), step_shape_l1=(1,2), n_l1_output=3,

filter_shape_l2=(1,4), step_shape_l2=(1,4), n_l2_output=3,

filter_shape_pooling=1, step_shape_pooling=1,

C=10

CNNb

Conv_1:32,3×3,Relu; Max-pooling: 2×2, stride=(2,2); BatchNormalization

Conv_2:64,3×3,Relu; Max-pooling: 2×2, stride=(2,2); BatchNormalization
Dense_1:32, Relu; Dense_2:6, SoftMax

optimizer=optimizers.rmsprop(lr=0.0001), loss='categorical_crossentropy',

metrics=['accuracy'], batch_size=64,epochs=60

FCNb

Conv_1:32,3×3,Relu; Conv_2:32,2×2, stride=(2,2); BatchNormalization

Conv_3:64,3×3,Relu; Conv_4:32,2×2, stride=(2,2); BatchNormalization

Conv_5:32,1×1,Relu; GlobalAveragePooling2D; Dense_6: SoftMax
optimizer=optimizers.rmsprop(lr=0.0001), loss='categorical_crossentropy',

metrics=['accuracy'], batch_size=64,epochs=60

PCANetb
KNN

filter_shape_l1=2, step_shape_l1=1, n_l1_output=4,

filter_shape_l2=2, step_shape_l2=1, n_l2_output=4,

filter_shape_pooling=1, step_shape_pooling=1

n_neighbors=1

PCANetb
RF

filter_shape_l1=2, step_shape_l1=1, n_l1_output=4,

filter_shape_l2=2, step_shape_l2=1, n_l2_output=4,

filter_shape_pooling=1, step_shape_pooling=1

'max_depth': None,'max_features': 'auto','n_estimators': 10,

PCANetb
SVM

filter_shape_l1=2, step_shape_l1=1, n_l1_output=4,

filter_shape_l2=2, step_shape_l2=1, n_l2_output=4,

filter_shape_pooling=1, step_shape_pooling=1

C=10

KNN n_neighbors=1, weights=uniform

RF 'max_depth': None,'max_features': 'auto', 'n_estimators': 10,

SVM 'C': 1, kernel': 'linear',

a Input of the networks is one dimensional vector. b Input of the networks is two dimensional matrix.

4

Parameter setting of regression models:
The parameter settings for the FNN, CNNa, FCNa, PCANeta

PLSR, PCANeta
RF,

PCANeta
SVM, CNNb, FCNb, PCANetb

PLSR, PCANetb
RF, PCANetb

SVM, LR, RF and PLSR
models with raw spectra were displayed in Table S4.

Table S4. Parameter setting of different regression models.

Methods Parameters

FNN
Dense_1:16, Relu; Dense_2: 8, Relu; Dense_3: 1;
optimizer=optimizers.rmsprop(lr=0.0001), loss='mse', batch_size=4, epochs=200

CNNa

Conv_1:16,1×3,Relu; Max-pooling: 1×2, stride=2; BatchNormalization;
Conv_2:32,1×3,Relu; Max-pooling: 1×2, stride=2; BatchNormalization;
Dense_1:32, Relu; Dense_2:16, Relu; Dense_3: 1
optimizer=optimizers.rmsprop(lr=0.0001), loss='mse', batch_size=4, epochs=120

FCNa

Conv_1:16, 1×3, Relu; Conv_2:16, 1×2, stride= (1,2), Relu;
BatchNormalization;

Conv_3:32, 1×3, Relu; Conv_4:32, 1×2, stride= (1,2), Relu;
BatchNormalization;

Conv_5:32, 1×1, Relu; Conv_6:16, 1×1, Relu; GlobalAveragePooling2D;
Dense_1: 1, optimizer=optimizers.rmsprop(lr=0.0008), loss='mse', batch_size=4,
epochs=120

PCANeta
PLSR

filter_shape_l1=(1,4), step_shape_l1=(1,1), n_l1_output=3,
filter_shape_l2=(1,4), step_shape_l2=(1,1), n_l2_output=3,
filter_shape_pooling=(1,3), step_shape_pooling=(1,1)
n_components=30

PCANeta
RF

filter_shape_l1=(1,4), step_shape_l1=(1,1), n_l1_output=3,
filter_shape_l2=(1,4), step_shape_l2=(1,1), n_l2_output=3,
filter_shape_pooling=(1,3), step_shape_pooling=(1,1)
'max_depth': None, 'max_features': 'auto', 'n_estimators': 10,

PCANeta
SVM

filter_shape_l1=(1,4), step_shape_l1=(1,2), n_l1_output=3,
filter_shape_l2=(1,4), step_shape_l2=(1,4), n_l2_output=3,
filter_shape_pooling=(1,3), step_shape_pooling=(1,1)
C=10

CNNb

Conv_1:16,3×3,Relu; Max-pooling: 2×2, stride=2; BatchNormalization;
Conv_2:32,3×3,Relu; Max-pooling: 2×2, stride=2; BatchNormalization;
Dense_1:32, Relu; Dense_2:16, Relu; Dense_3: 1
optimizer=optimizers.rmsprop(lr=0.0001), loss='mse', batch_size=4, epochs=120

FCNb

Conv_1:16, 3×3, Relu; Conv_2:16, 2×2, stride= (2,2), Relu;
BatchNormalization;

Conv_3:32, 3×3, Relu; Conv_4:32, 2×2, stride= (2,2), Relu;
BatchNormalization;

Conv_5:32, 1×1, Relu; Conv_6:16, 1×1, Relu; GlobalAveragePooling2D;
Dense_1: 1; optimizer=optimizers.rmsprop(lr=0.0001), loss='mse', batch_size=4,

javascript:;
javascript:;

5

epochs=120

PCANetb
PLSR

filter_shape_l1=2, step_shape_l1=1, n_l1_output=3,
filter_shape_l2=2, step_shape_l2=1, n_l2_output=3,
filter_shape_pooling=2, step_shape_pooling=2
n_components=30

PCANetb
RF

filter_shape_l1=2, step_shape_l1=1, n_l1_output=3,
filter_shape_l2=2, step_shape_l2=1, n_l2_output=3,
filter_shape_pooling=2, step_shape_pooling=2
'max_depth': None, 'max_features': 'auto', 'n_estimators': 10,

PCANetb
SVM

filter_shape_l1=2, step_shape_l1=1, n_l1_output=3,
filter_shape_l2=2, step_shape_l2=1, n_l2_output=3,
filter_shape_pooling=2, step_shape_pooling=2
C=10

LR 'copy_X': True, 'fit_intercept': True, 'n_jobs': None, 'normalize': False

RF 'max_depth': None, 'max_features': 'auto', 'n_estimators': 10,

PLSR 'n_components': 100, 'tol': 1e-06

a Input of the networks is one dimensional vector. b Input of the networks is two dimensional matrix.

KNN: n_neighbors—the value of k in KNN.
 weights—dentified the weights of the nearest neighbor samples for each sample.
 'uniform' -- all the nearest neighbor samples have the same weight.
RF:

n_estimators—the number of decision trees in a random forest.
 max_features—maximum feature number of random forest partition.

max_depth—the maximum depth of the decision tree.
PLSR:

n_components—the number of components to keep.
tol—tolerance used in the iterative algorithm default 1e-06.

LR:
fit_intercept—calculate the intercept for this model.

SVM:
C—Penalty parameter C of the error term.
kernel—Specifies the kernel type to be used in the algorithm.

PCANet:
 parameters for the 1st layer: filter_shape_l1, step_shape_l1, n_l1_output

parameters for the 2nd layer: filter_shape_l2, step_shape_l2, n_l2_output
parameters for the pooling layer: filter_shape_pooling, step_shape_pooling

