Electronic Supplementary Information (ESI)

A novel analysis principle by AP site-mediated T7 RNA polymerase transcription regulation for uracil-DNA glycosylase activity sensing

Weichen Gao,^{‡a} Jin Xu,^{‡b} Guowei Lian,^a Xiaojun Wang,^c Xiaoqun Gong,^a Dianming Zhou,^{c,*} and Jin Chang^{a,*}

^aSchool of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin), Tianjin 300072, China *Corresponding authors. E-mail:jinchang@tju.edu.cn ^bTianjin Hospital, 406 jiefangnan Road, Tianjin 300211, China ^cDepartment of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China *Corresponding authors. E-mail: dianmingzhou@foxmail.com

Fig.S1. Real-time fluorescence curve of T7 RNA polymerase transcription. (solid line: without UDG; dotted line: with 250 U/mL UDG)

Fig.S2. Dependency of the sensing method on UDG excision time. (Endpoint fluorescence for min, UDG = 2.5 U/mL)

Fig.S3. Specificity of transcription regulation-based UDG analysis method. (2.5 U/mL UDG, 2.5 U/mL hAAG, 10 U/mL UGI, 1 mg/mL BSA)

Fig.S4. Real sample analysis using HeLa cell lysate.

Effect of uracil replacement at template T region on transcription

The designed probe sequences are shown in Table S1. The U marked in red font indicates that thymine is replaced by uracil. The A chain was hybridized with B39, B44, and B48, respectively, and the transcription result under the action of T7 RNA polymerase is shown in Figure S5A. As expected, uracil substitutions have no significant effect on transcription. These hybrid strands were treated with UDG and then reacted with T7 RNA polymerase, showing unexpected results (Figure S5B). A: B39 and A: B44 showed inhibition on transcription, while A: B48 showed promotion on transcription. This finding indicates that some AP sites in the T region of the B chain can also affect transcription.

 Abbreviation
 Sequence (5'-3')

 A
 TAATACGACTCACTATAGGA

 B39
 GGATCCATTCGTTACCUGGCTCTCGCCAGTCGGGATCCTATAGTGAGTCGTATTA

 B44
 GGATCCATTCGUTACCTGGCTCTCGCCAGTCGGGATCCTATAGTGAGTCGTATTA

 B48
 GGATCCAUTCGTTACCTGGCTCTCGCCAGTCGGGATCCTATAGTGAGTCGTATTA

Table S1. Sequences (5'-3') of synthetic oligonucleotides used in this study:

U represents uracil deoxyribonucleotide residues.

Fig.S5. Effect of uracil replacement at template T region on transcription.

We have made a table to compare the present work with other UDG detection methods in the Supplementary information. As shown in Table S2, this strategy makes substrate probes design easier and no need for multi-enzyme system. Simplified experiment operation and has good sensitivity.

Methods	Sensitivity	Specificity	Probe	Enzyme	Ref.
			design	system	
Detection method of radioactive	$\sim 10 U/mL$	Good	No need	No enzyme	1
label based on gel					
electrophoresis					
Sensor based on colorimetry	$\sim 10^{-2} U/mL$	Perfectly	Complex	No enzyme	2, 3
Chemiluminescence detection	$\sim \! 10^{\text{-1}} U/mL$	Good	Complex	No enzyme	4
method					
Fluorescent labeling strategy	$\sim \! 10^{-4} U/mL$	Perfectly	Complex	Single	5
based on chain displacement				enzyme	
reaction					
Enzyme-assisted amplification	$\sim 10^{-3} U/mL$	Good	Simple	Multi-enzyme	6
strategy based on excision				system	
repair					
Amplification strategy assisted	$\sim \! 10^{-4} U/mL$	Perfectly	Simple	Multi-enzyme	7
by TdT enzyme and T7 Exo				system	
UDG detection strategy based	$\sim \! 10^{-4} U/mL$	Perfectly	Simple	Single	This study
on AP site regulation of T7				enzyme	
RNA polymerase					

Table S2. Comparison of this work with other UDG detection methods.

References:

- 1 P. Vaughan and T. V. McCarthy, *Nucleic Acids Res*, 1998, 26, 810-815.
- 2 X. Liu, M. Chen, T. Hou, X. Wang, S. Liu and F. Li, *Biosens Bioelectron*, 2014, 54, 598-602.
- 3 H. Nie, W. Wang, W. Li, Z. Nie and S. Yao, *Analyst*, 2015, 140, 2771-2777.
- 4 J. Dong, J. Lian, Y. Jin and B. Li, *Analytical Methods*, 2017, 9, 276-281.
- 5 Y. Wu, L. Wang and W. Jiang, *Biosens Bioelectron*, 2017, **89**, 984-988.
- 6 L. J. Wang, M. Ren, Q. Zhang, B. Tang and C. Y. Zhang, Anal Chem, 2017, 89,4488-4494.
- 7 Y. C. Du, Y. X. Cui, X. Y. Li, G. Y. Sun, Y. P. Zhang, A. N. Tang, K. Kim and D.M. Kong, *Anal Chem*, 2018, **90**, 8629-8634.