Supporting Information for

Enhanced gas sensor based on SiO₂@mesoporous MCM-41 coreshell nanocomposites for SO₂ visual detection

Ji Yang^a, Fuqiang Cheng^a, Zuogang Zhu^b, Jinsheng Feng^a, Min Xue^a, Zihui Meng^{a,*}, Lili Qiu^a

^a School of Chemistry & Chemical Engineering, Beijing Institute of Technology,

Beijing 100081, PR China

^b Beijing Municipal Institute of Labor Protection, Beijing 100054, PR China

□ Corresponding authors.

E-mail addresses: m_zihui@yahoo.com (Z. Meng)

Figure S1. The SiO₂@MCM-41 sensing system for SO₂ gas detection.

Figure S2. The standard working curve of sulfate ion for the chromatographic peak area.

The standard working curve equation of sulfate ion is y = 0.0324x + 2.2662, $R^2 = 0.9923$, and the linear range of the equation is 50-1000 mg/L.

Figure S3. Photo image of the homemade sensing system of SO₂ GDT.

Figure S4. (a) N_2 adsorption-desorption isotherm (77 K) and (b) pore size distribution profile of SiO₂@MCM-41.

