Supporting information

Synthesis and SERS Application of Gold and Iron Oxide Functionalized Bacterial Cellulose Nanocrystals (Au@Fe₃O₄@BCNCs)

Seju Kang,^{a,b,1} Asifur Rahman,^{a,b,1} Ethan Boeding,^{a,b} Peter J. Vikesland,^{a,b*}

^aDepartment of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia;

^bVirginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia;

¹These authors made equal contributions to this work.

* Corresponding author: <u>pvikes@vt.edu</u>

Figure S1. Residual MGITC fraction in solution with contact time between the nanocomposites and MGITC. The concentration of MGITC were measured by using the UV-Vis spectrophotometer. Inset shows the images of MGITC solution after 0 and 120 mins of contact time

Figure S2. (A) FT-IR spectra of (a) BCNC, (b) BCNC@Fe precursor, (c) Fe₃O₄@BCNC, (d) 1 mM Au@Fe₃O₄@BCNC and (e) 10 mM Au@Fe₃O₄@BCNC **(B)** Enlarged spectra showing the peaks at 1162 cm⁻¹, 1110 cm⁻¹ and 1060 cm⁻¹.

Figure S3. Spatial variability of 1175 cm⁻¹ under dry and wet states.

Figure S4. The Raman intensities at 1175 cm⁻¹ for the samples dried with and without a magnetic field using 10 different substrates for each. Insets show the optical images of dried samples with (A) and without (B) magnetic concentration