SUPPLEMENTARY INFORMATION

Triggered peroxidase-like activity of Au decorated carbon dots strategy for colorimetric monitoring the Hg²⁺ enrichment of *Chlorella vulgaris*

Wene-Liu, Lili-Tian, Jie Du*, Jiangmin-Wu, Yongmei-Liu, Guofan-Wu and Xiaoquan-Lu*

College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu, China Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Northwest Normal University, Lanzhou, 730070 China.

1 Synthesis of GNPs

According to the previous report^[1], 5 mL of lysine aqueous solution was mixed with 10 mL of aqueous HAuCl₄ (10mM). After the mixed solution was stirred vigorously at 37 °C for 20 minutes, it was incubated with 0.5 mL of NaOH (1 M) for 12 h, then stirred continuously for 3 h with 3 mL of hydrazine hydrate to obtain GNPs. The GNPs was dialyzed for 2 days using a 1000 Da cut-off dialysis bag with deionized water to separate the unreacted small molecules from the mixture. The obtained GNPs solution was stored at 4 °C for subsequent use.

Fig. S1A. The experiment of Hg²⁺-triggered peroxidase-like activity of GNP@CDs with different substrates and (B)corresponding color changes (a. ABTS+100nM Hg²⁺; b. ABTS+0nM Hg²⁺; c. TMB+100nM Hg²⁺; d. TMB+0nM Hg²⁺; e. OPD+100nM Hg²⁺; f. OPD+0nM Hg²⁺)

Fig. S2 The influence of (A) the value of pH; (B). the concentration of acetate buffer; (C). the concentration of TMB; (D). the concentration of H_2O_2 on Hg^{2+} induced the peroxidase-like activity of GNP@CDs.

Materials	Linear Range	LOD	Ref.	
BSA-Pt NPs	0-120 nM	7.2 nM	[2]	
CoS-p-rGO	2-100 nM	14.23 nM	[3]	
Fe3O4@ZnO	0-10nM	23nM	[4]	
Sphere-like CoS	0.25-3µM	0.1µM	[5]	
Cu@Au nanoparticles	10-500nM	10nM	[6]	
Oxide-PEI-Pd Nanohybrids	0.1-25nM	0.39nM	[7]	
CS-AuNPs	0.04-10.2µM	20nM	[8]	
GNP@Lys@CDs	7-150nM	3.7 nM	This Work	

Table S1 Comparison of this strategy with other methods for the determination of Hg^{2+}

Fig. S3A. The pictures of GNP@CDs stored at different times; B. Shelf-life of the GNP@CDs after 16 weeks

Sample	Content of Hg ²⁺ /nM	Added/nM	I Found/nM	Recovery%	RSD%
		20	61.90	106.70	5.21
Chlorella vulgaris	40.56	50	92.88	104.64	6.16

Table S2 Results of the determination of Hg^{2+} in Chlorella extract

References

- Xu, Y., X. Yang, S. Zhu, and Y. Dou, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 450,115.
- [2] Li, W., B. Chen, H. Zhang, Y. Sun, J. Wang, J. Zhang, and Y. Fu, Biosens Bioelectron, 2015, 66,251.
- Borthakur, P., G. Darabdhara, M.R. Das, R. Boukherroub, and S. Szunerits, Sensors and Actuators B: Chemical, 2017, 244,684.
- [4] Christus, A.A.B., A. Ravikumar, P. Panneerselvam, and K. Radhakrishnan, Applied Surface Science, 2018, 449,669.
- [5] Yang, H., J. Zha, P. Zhang, Y. Xiong, L. Su, and F. Ye, RSC Advances, 2016, 6,66963.
- [6] Zhao, Y., H. Qiang, and Z. Chen, Microchimica Acta, 2016, 184,107.
- [7] Zhang, S., D. Zhang, X. Zhang, D. Shang, Z. Xue, D. Shan, and X. Lu, Anal Chem, 2017, 89,3538.
- [8] Jiang, C., Z. Li, Y. Wu, W. Guo, J. Wang, and Q. Jiang, Bulletin of the Korean Chemical Society, 2018, 39,625.