All-Printed Semiquantitative Paper-Based Analytical Devices Relying on QR Code Array Readout

Aya Katoh \dagger, Kento Maejima \dagger, Yuki Hiruta, and Daniel Citterio*
Keio University, Department of Applied Chemistry, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, Japan
*To whom correspondence should be addressed.
Email: citterio@applc.keio.ac.jp

Table of Contents

Abbreviations

Reagents

Fig. S-1. Detailed device dimensions
Fig. S-2. Overview of the entire PAD fabrication process
Fig. S-3. Chemical structures of Zincon and Amaranth; Cu^{2+} detection chemistry
Fig. S-4. Influence of QR code dimensions on readout ability
Fig. S-5. Illustration of mask principle
Fig. S-6. Influence of gaps between QR codes in an array
Table S-1. Cu^{2+} concentration-dependent grey values for different regions of devices
Table S-2. Optimization of mask condition
Table S-3. Ideal readout result for Cu^{2+} detection
Table S-4. Influence of types of smartphone
Table S-5. Influence of lighting

Abbreviations

URL: Universal Resource Locator
MES: 2-(N-morpholino)ethanesulfonic acid
NaOH : Sodium hydroxide
Zincon: (1-(2-Hydroxycarbonylphenyl)-5-(2-hydroxy-5-sulfophenyl)-3phenylformazan, sodium salt)
Amaranth: Trisodium 2-hydroxy-1-(4-sulfonato-1-naphthylazo)naphthalene 3,6-disulfonate
PAH: Poly(allyl amine chloride)
PDDA: Poly(diallyl ammonium chloride)

Reagents

Ultrapure water ($>18 \mathrm{M} \Omega \mathrm{cm}$) was obtained from a Direct-Q ${ }^{\circledR} 3 \mathrm{UV}$ ultrapure water purification system (MilliporeSigma, Burlington, MA) and used for the preparation of all aqueous solutions. Zincon (1-(2-hydroxycarbonylphenyl)-5-(2-hydroxy-5-sulfophenyl)-3phenylformazan, sodium salt) and 2-(N-morpholino)ethanesulfonic acid (MES) were purchased from Dojindo Molecular Technologies, Inc. (Kumamoto, Japan). Sodium hydroxide (NaOH) and copper (II) chloride were purchased from FUJIFILM Wako Pure Chemical Industries (Osaka, Japan). Poly(diallyl ammonium chloride) (PDDA), poly(allyl amine chloride) (PAH) (molecular weight of 17500 g mol-1) and trisodium 2-hydroxy-1-(4-sulfonato-1-naphthylazo)naphthalene 3,6-disulfonate (Amaranth) were obtained from MilliporeSigma (Burlington, MA).

Fig. S-1. Schematic illustration of device dimensions: (A) Design A; (B) Design B.
(A)

(B)

QR code: $8 \times 8 \mathrm{~mm}^{2}$
(C)

Fig. S-2. Overview of the entire PAD fabrication process: (A) Design A for evaluation of immobilisation capability; (B) Design A for evaluation of mask function; (C) Design B.

(A)

(B)

Fig. S-3. (A) Structure of Zincon and its Cu^{2+} detection chemistry; (B) Structure of Amaranth.

Fig. S-4. Influence of QR code dimensions on readout ability by the barcode reader app due to print resolution limitation. QR code patterns were printed in two print cycles with Zincon ink, after the deposition of MES buffer and PAH ink onto the entire region.

Fig. S-5. Illustration of mask principle: The optimal print opacity range was determined by the relationship between the Δ grey values of the free Zincon state and the mask, and between the $\mathrm{Cu}^{2+}-\mathrm{Zincon}$ complexed state and the mask. The ideal condition is with the QR code being readable (O) for the Cu^{2+} - Zincon complexed state and non-readable (\times) for the free Zincon state, which has been achieved within the green highlighted range; black arrows and numbers indicate Δ grey values.

Fig. S-6. Influence of gaps between QR codes in an array: (A) Illustration of QR code gap size; (B) Schematic illustration of QR code gap influence on number of readable QR codes; (C) Photograph of experimental results illustrating changes in number of readable $Q R$ codes by varying gaps from -0.5 to 4 mm ; all experiments performed in triplicate.

Table S-1. Cu^{2+} concentration-dependent grey values for different regions of devices according to Design B ($\mathrm{n}=3$).

	Grey value after sample application							
CuCl_{2}								
$[\mathrm{mM}]$						Unreacted areas (Zincon QR code pattern)	Reacted areas (Zincon QR code pat- tern)	Amaranth mask region
:---:	:---:	:---:	:---:					
0	202.5 ± 0.3	-	182.5 ± 0.2					
0.1	203.1 ± 0.4	208.6 ± 0.1	181.4 ± 0.3					
0.4	202.4 ± 0.2	208.5 ± 0.6	181.3 ± 0.3					
0.8	203.1 ± 0.4	208.3 ± 0.4	181.7 ± 0.2					
1.6	202.8 ± 0.6	208.4 ± 0.3	181.3 ± 0.2					
2	203.1 ± 0.5	208.5 ± 0.2	181.8 ± 0.1					
3.2	-	208.5 ± 0.2	181.6 ± 0.1					

Table S-2. Optimization of mask condition ($\mathrm{n}=3$).

Opacity [\%]	Grey value	No sample	$0 \mathrm{mM} \mathrm{CuCl}_{2}$	$3 \mathrm{mM} \mathrm{CuCl}_{2}$
40	186.6 ± 0.2	$\times(0 / 3)$	$\times(0 / 3)$	$\times(0 / 3)$
41	184.7 ± 0.5	$\times(0 / 3)$	$\times(0 / 3)$	$\Delta(1 / 3)$
42	183.2 ± 0.3	$\times(0 / 3)$	$\times(0 / 3)$	$\mathrm{O}(3 / 3)$
43	181.5 ± 0.3	$\times(0 / 3)$	$\times(0 / 3)$	$\mathrm{O}(3 / 3)$
44	179.7 ± 0.5	$\times(0 / 3)$	$\times(0 / 3)$	$\mathrm{O}(3 / 3)$
45	177.7 ± 0.3	$\times(0 / 3)$	$\times(0 / 3)$	$\mathrm{O}(3 / 3)$
46	176.8 ± 0.4	$\times(0 / 3)$	$\times(0 / 3)$	$\mathrm{O}(3 / 3)$
47	174.8 ± 0.3	$\times(0 / 3)$	$\times(0 / 3)$	$\mathrm{O}(3 / 3)$
48	173.7 ± 0.3	$\Delta(2 / 3)$	$\Delta(1 / 3)$	$\mathrm{O}(3 / 3)$
49	172.3 ± 0.5	$\mathrm{O}(3 / 3)$	$\mathrm{O}(3 / 3)$	$\mathrm{O}(3 / 3)$
50	170.8 ± 0.5	$\mathrm{O}(3 / 3)$	$\mathrm{O}(3 / 3)$	$\mathrm{O}(3 / 3)$

O All QR codes of the three replicated devices recognised; Δ one or two of them recognised; \times none of them recognised
The green shaded area indicates the optimal condition, with all QR codes being masked before sample application or after application of a blank sample, becoming recognisable for barcode reader app after Cu^{2+} sample application.

Table S-3. Ideal readout result for Cu^{2+} detection.

	QR code 1 ${ }^{\text {a }}$	QR code $2^{\text {b }}$	QR code $3^{\text {c }}$ (
Specification	Low conc. range detection	Mid conc. range detection	High conc. range detection
No sample	\times	\times	\times
Blank sample	\times	\times	\times
Low conc. sample	readable	\times	\times
Mid conc. sample	readable	readable	\times
High conc. sample	readable	readable	readable
${ }^{\text {a) }}$ Located closest to sample inlet			
${ }^{\text {b) }}$ Centre position			
${ }^{\text {c) }}$ Located furthest downstream of sample flow			

Table S-4. Influence of types of smartphone ($\mathrm{n}=3$).

$\mathrm{CuCl}_{2}[\mathrm{mM}]$	Number of readable QR codes	
	Xperia	iPhone
0	$0 / 3$	$0 / 3$
0.1	$0 / 3$	$0 / 3$
0.4	$1 / 3$	$1 / 3$
0.8	$1 / 3$	$1 / 3$
1.6	$2 / 3$	$2 / 3$
2	$2 / 3$	$2 / 3$
3.2	$3 / 3$	$3 / 3$

Table S-5. Influence of environmental lighting ($\mathrm{n}=3$).
CuCl_{2}
$[\mathrm{mM}]$ c Number of readable QR codes

