1 Supporting Information

2 Table S1. Details of targets

ID	Target	Gene	NCBI	Amplicon length	
			accession	(bp)	
1	E. coli	malB	NC_019072.1	204	
2	P. aeruginosa	oprL	Z50191.1	176	
3	K. pneumoniae	rcsA	NC_012731.1	191	
4	P. mirabilis	ureR	Z18752.1	235	
5	E. faecalis	Ef0027	NC_004668.1	199	

3

4 Table S2. LAMP primers

Gene	Sequences (5' to 3')	References
malB		1
F3	GCCATCTCCTGATGACGC	
B3	ATTTACCGCAGCCAGACG	
EID	CATTTTGCAGCTGTACGCTCGCAGCCCATCATGAATGTTG	
FIF	СТ	
DID	CTGGGGCGAGGTCGTGGTATTCCGACAAACACCACGAAT	
DIF	Т	
LF	CTTTGTAACAACCTGTCATCGACA	
LB	ATCAATCTCGATATCCATGAAGGTG	
oprL		2
F3	GCGTTGCCGCCAACAATG	
B3	GGATCTGGTTCTGCTGCT	
FIP	GTTGTCACCCCACCTCCGGGCGGCAACGTTCCTCC	
BIP	CTCCGTGCAGGGCGAACTGCAGGCGAGCCAACTC	
LF	ACCTGCCGTGCCATACC	
LB	GTTCATGCAGCTCCAGCAG	
rcsA		3
F3	GGATATCTGACCAGTCGG	
B3	GGGTTTTGCGTAATGATCTG	
EID	CGACGTACAGTGTTTCTGCAGTTTTAAAAAACAGGAAATC	
FIF	GTTGAGG	
סוס	CGGCGGTGGTGTTTCTGAATTTTGCGAATAATGCCATTAC	
DIP	TTTC	
LF	GAAGACTGTTTCGTGCATGATGA	
<i>ureR</i> (P.m-3)		This study
F3	TGGTGCAAAAGGTGAGAT	
B3	ATAATCTGGAAGATGACGAGTA	
FID	TGTCACATCACAAGAAACTTGACTAGTATTAATGGGCAAA	

	CTATCACAG	
DID	TTCCCGACCAAACCGATTGAATTA-	
DIF	TAATGGTTTGAGTAAAGAGAACAC	
LF	TCAACGTGAGATTAGTGGTGA	
LB	CATACCTTAGTACTGTCTGAAACTG	
Ef0027		4
F3	ACAGAAAGCGATAGTCGTAGT	
B3	CCTAAAAATGTTAGCTTTCGTGC	
EID	TGGCTTCATCCATTTGTTGAAAACTTTTCAAGCTATTACGC	
I IF	AACAGT	
DID	AAGTCGCGGAAATGCTTAAAATG-	
DIF	GTACAAATAGGAAAACTGCCAC	
LF	ATCTTGCACATTGGCAATCA	
LB	CGATTGAAGTGTTCGGTGT	

6 Table S3. Primer screening for *Proteus mirabilis*

Primer	Sequences (5' to 3')
P.m-1	
F3	CGCCGATTACTCGTCATC
B3	TTTGGCTCATCATAATTAAAACG
FIP	GGTAGACATTGCTGAAGTAACGTAATTCCAGATTATCATCTATCAACA
BIP	CCTCTCAAGAGACCCTGTTTATGCTATCGACCCCTTCGTGAT
LF	AGCCTCTTTTTATTTTGCTGGCGG
LB	CGCCGATTACTCGTCATC
P.m-2	
F3	CAACACCTGAGGTGGTTA
B3	CGGATCTTGTGTTATTAGATGAG
FIP	CAGGGTCTCTTGAGAGGGGGGCTAATTTTACGTTACTTCAGCAATG
BIP	TGCTGGCGGTTTATCACGAA-GCCTGATTTTTTGGCTCAT
LF	TGCCATGTTCAAGCGGTAGA
LB	CAACACCTGAGGTGGTTA
P.m-3	
F3	TGGTGCAAAAGGTGAGAT
B3	ATAATCTGGAAGATGACGAGTA
FIP	TGTCACATCACAAGAAACTTGACTAGTATTAATGGGCAAACTATCACA
BIP	TTCCCGACCAAACCGATTGAATTA-TAATGGTTTGAGTAAAGAGAACA
LF	TCAACGTGAGATTAGTGGTGA
LB	CATACCTTAGTACTGTCTGAAACTG
P.m-4	
F3	TGACAAATTTTTTCCCGACC
B3	TGTTGCATAAACAGGGTCT
FIP	CGCCCCTGATTTTATTAATGGTTTG-GAATTACATACCTTAGTACTGTC

BIP	TATCATCTATCAACACCTGAGGTGG-CCATGTTCAAGCGGTAGAC
P.m-5	
F3	GGGTCGATATTCTTAATATTTTTCG
B3	TAATTTAATGCGATGGGGATT
FIP	ATGCCATTTACGTTGCGGATCTGATGAGCCAAAAAATCAGGC
BIP	AACGCTCTATACTACACCATCAACACTGACATCCAACAGTAATTGG
LF	CGCCATTTAAGTAAAGAGGGCGT

Figure S1. (A) Optimizing the concentration of UDG. (B) Reaction efficiencies
were compared in case of two factors: room temperature placement and UDG.

12

¹² We carried out an experiment to optimize the concentration of UDG (Figure S1(A)). Except for different final concentrations of UDG, the other compositions of the reaction were the same as described in Figure 2A. The stock concentration of UDG was 1 U μ L⁻¹. We added 0, 0.2, 0.5, 1, and 2 μ L of UDG respectively to the 25 μ L of reaction mixture.

18 Table S4. Comparison of the performances of commercial kits for nucleic acid extraction.

Material	Molecule	Commercia	Sample	Applicatio	Advantage	Disadvantage	Reference
		I products		n			
1.FTA	DNA, RNA	Whatman	1.2 mm punches	5-20 ng	Easy to use and store	limited amount of	5
cards				DNA		nucleic acid	
2.Silica	DNA, RNA	QIAamp	Blood (200 µL)	4-12 μg	High-purity DNA	Unable to recover	6
matrices				DNA		small DNA	
						fragments	
3.Magnetic	DNA, RNA	TIANGEN	Blood (100-250	4-8 μg DNA	No centrifugation,	Interference in	6, 7
bead			μL)		best choice for	PCR amplification	
					automation		
4.Alkaline	Plasmid	TaKaRa	1-4 mL of fresh	1-20 μg	High-purity plasmid	Containing high	8
extraction			bacteria	Plasmid	DNA	concentration of	
				DNA		alkaline solutions	
						and denaturant	

19

20 References

- J. Hill, S. Beriwal, I. Chandra, V. K. Paul, A. Kapil, T. Singh, R. M. Wadowsky,
 V. Singh, A. Goyal, T. Jahnukainen, J. R. Johnson, P. I. Tarr and A. Vats, *J. Clin. Microbiol.*, 2008, 46, 2800-2804.
- M. Goto, K. Shimada, A. Sato, E. Takahashi, T. Fukasawa, T. Takahashi, S.
 Ohka, T. Taniguchi, E. Honda, A. Nomoto, A. Ogura, T. Kirikae and K. Hanaki,
 J. Microbiol. Meth., 2010, 81, 247-252.
- 27 3 D. Dong, W. Liu, H. Li, Y. Wang, X. Li, D. Zou, Z. Yang, S. Huang, D. Zhou, L.
 28 Huang and J. Yuan, *Front. Microbiol.*, 2015, 6, 519-524.
- 29 4 Y. Wang, H. Li, Y. Wang, L. Zhang, J. Xu and C. Ye, *Front. Microbiol.*, 2017, 8, 192-205.
- H. Y. Wong, E. S. S. Lim and W. F. Tan-Siew, *Forensic Science International: Genetics*, 2012, 6, 176-179.
- 33 6 N. Ali, R. Rampazzo, A. Costa and M. A. Krieger, Biomed Res. Int., 2017, 2017,
- 34 1-13.
- 35 7 http://www.tiangen.com/
- 36 8 https://www.takarabiomed.com.cn/