Supporting information for

Tunable Plasmonics of Hollow Raspberry-like Nanogold for Robust Raman Scattering Detection of Antibiotic on Portable Raman Spectrometer Yiping Wu^{a, b*}, Yi Liu^a, Xuefei Tang^a, Zhengzhong Cheng^a, Honglin Liu^{b,*}

Sample preparation

Au seed

The synthesis of normal Au (N-Au) particles is described by a seed-growth method. Firstly, the synthesis of Au seed is the same as Ag seed. 1 mL of $HAuCl_4 \cdot 4H_2O$ (1%) aqueous solution was dissolved with 150 mL of water and then boiled under vigorous stirring. Then, 5 mL of Trisodiumcitrate (NaCt) (1%) aqueous solution was used as a reductant and quickly added. The reaction was allowed to proceed for 30 min. This solution was used as Au seeds to prepare N-Au.

N-Au particle

5 mL CTAB (1%) and 1 mL HAuCl₄·H₂O (5 mM) were added into a flask under vigorous stirring. Then, 70 μL AA (0.1 M) was added as reductant. The solution was used as growth solution. 4 mL of above Au seed solution was added into it under mild magnetic stirring for 10 min. Then the mixture was setting quietly for 1h to allow the N-Au growing completely. The dispersions were centrifuged (5 min at 4000 rpm), and the precipitates were washed three times with ultrapure water. Finally, the samples were both concentrated in at a 10:1 scale. The Au NRs obtained were labelled N-Au.

Enhancement factor calculation

The optical enhancement properties of the R-like Au-2 were tested using crystal violet (CV) as a model analyte. The following equation was used to estimate the enhancement factors (EF):

$$EF = \frac{I_{SERS}}{N_{surf}} \div \frac{I_{Raman}}{N_{bulk}}$$

where I_{SERS} and I_{Raman} are the integrated intensities of a vibrational mode in SERS and Raman spectra, respectively, N_{surf} and N_{bulk} are the numbers of molecules probed in the SERS and Raman measurements. Herein, I_{SERS} represents the SERS intensities at 913 cm⁻¹ collected from CV with the concentration of 10^{-10} M as shown in Fig. 4A, which is about 1460 cnts. I_{Raman} represents the Raman intensities at 913 cm⁻¹ collected from CV with the concentration of 10^{-9} M on Si wafers, which is about 250 cnts under the similar experimental setup as shown in Fig. S6

 N_{surf} is the average number of adsorbed molecules in the scattering volume for the SERS measurements. 1 µL of R-Like colloidal produced a deposition area of 1 mm in diameter. Considering an area ratio of approximately 6 ×10⁵ (π ×0.52 mm²/ π ×0.652 µm²) between the deposition area and the laser spot and assuming uniform distributions of all particles and molecules, there was an average of 10⁸ molecules (10⁸=10⁻¹⁰ M ×6 ×10²³ molecules/mol/6 ×10⁵) within the scope of the laser spot (1.29 µm in diameter). N_{bulk} is the average number of molecules in the scattering volume for the Raman measurements, and can be calculated to be about 10¹³ within the scope of the laser spot.

A conservative EF for the CV molecules on the R-like Au colloidal can be calculated to be about 10⁶.

Figures and tables:

Fig. S1 TEM images of R-like Au particles growing for 60 min with the concentrations HAuCl₄·4H₂O from 2.5 to 10 mM which were labelled: (A) R-like Au-1, (B) R-like Au-2, (C) R-like Au-3, (D) R-like Au-4

Fig. S2. Optical photograph of particles: (A) R-like Au-2, (B) Ag@Au, (C) Ag seed, (D) Au seed

Fig. S3. N-Au particles: TEM images (A) and enlarged details (B)

Fig. S4. SERS spectra of 10⁻⁹ M CV molecules collected on R-like-Au (1-4) of newly prepared (A) and stored for three months (B), respectively

Fig. S5. SERS spectra of CV with concentrations ranging from 10⁻⁶ M to 10⁻¹⁰ M (A) and MG with concentrations ranging from 10⁻⁴ M to 10⁻⁸ M (B) on the N- Au

Fig. S6 The Raman spectrum of CV with concentration of 10⁻⁵ M on Si wafers

Fig. S7. SERS spectrum of NFT standard solution on the R-like Au-2

NFT						
No.	SERS/cm ⁻¹	SERS/cm ⁻¹	assignment			
	(standard solution)	(simulated solution)				
1	1600	1600	v(C=N) • in-plane • symmetric • stretch			
2	1488	1484	v(ring) • in-plane • symmetric • stretch			
3	1339	1339	ω(H-C-H)vs(ring)			
4	1256	1256	ι(H-C-H)ω(C-H)ν(C-O)			
5	1182	1176	ω(C-H) $β$ (H-C-H) $ν$ (NO ₂)			
6	1019	1021	v(C-O)v(C-C)			
7	968	968	ω(H-C-C-H)			

Table S1 Comparison of the SERS spectra of standard and simulated solution of NFT in frequency

Fig. S8. SERS spectrum of NFZ standard solution on the R-like Au-2

Table S2 Comparison of the SERS spectra of standard and simulated solution of NFZ in frequency

ignment

NFZ					
No.	SERS/cm ⁻¹	SERS/cm ⁻¹	assignment		
	(standard solution)	(simulated solution)			

and assignment

1	1594	no	v(C=N) in-plane symmetric
			stretch
2	1551	1559	vas(NO ₂)vs(ring)
3	1473	1471	v(ring) in-plane symmetric
			stretch
4	1343	1343	ω(H-C-H)vs(ring)
5	1234	1236	vs(C-N-N)v(C-O)ω(C-H)
6	1174	1152	ω(C-H) $β$ (H-C-H) $ν$ (NO ₂)
7	1015	1017	v(C-O)v(C-C)
8	962	964	ω(H-C-C-H)