Developing A Toll-like Receptor Biosensor for Gram-Positive Bacterial Detection and its Storage Strategies

Jennifer McLeod^{ab}, Chankyu Park^a, Alexandra Cunningham^a, Lynne O'Donnell^c, R. Stephen Brown^{abc}, Fiona Kelly^d, Zhe She^{ab*}

- a) Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada. Email: zhe.she@queensu.ca
- b) Beaty Water Research Centre, Queen's University, Kingston, ON, K7L 3N6, Canada.
- c) School of Environmental Studies, Queen's University, Kingston, ON K7L 3N6, Canada.
- d) Department of Chemistry and Chemical Engineering, Royal Military College of Canada, PO Box 17000, Station Forces, Kingston, ON, K7K 7B4, Canada.

Experimental Method

Instrumentation. Milli-Q (MQ) water (18.2 M Ω ·cm) was obtained from a Millipore Synthesis A10 Milli-Q water system. pH measurements were carried out on a Fisherbrand pH probe. DRP-C220AT DropSens screen printed electrodes and DRP-CAC (Model code) connectors were purchased from Metrohm AG (Herisau, Switzerland). Each DRP-C220AT DropSens chip contains a gold working electrode, a gold counter electrode, and Ag pseudo-reference electrode. The surface area of working electrode is 12.6 mm². Electrochemical measurements were performed on a CHI6055E potentiostat purchased from CH Instruments (Austin, TX). All experiments were performed at room temperature under ambient conditions.

Preparation of TLR 2/6 hybridized Sensor. TLR sensors were prepared using DropSens gold screen printed electrode (SPE). 1-lipoic acid n-hydroxysuccinimide ester (LPA) was synthesized following a published protocol.¹ LPA solution at a concentration of 2 mM was prepared using ethanol/MQ water (volume ratio of 1:1). A clean plastic petri dish was lined with a filter paper which was dampened with a 1:1 solution of ethanol and MQ. The DropSens SPE was placed on the filter paper and 50 µL of the 2 mM LPA solution was dropped onto the working electrode. The petri dish was sealed with parafilm and placed in a fridge at 4 °C for 24 hours. An additional 50 µL of the 2 mM LPA solution was cast onto the working electrode and returned to the fridge for another 24 hours. After a total of 48 hours the SPE was rinsed thoroughly with ethanol and MQ water before being blown dry with nitrogen. TLR2 and TLR6 proteins were individually reconstituted into solutions at a concentration of 200 μ g/mL using PBS buffer (pH ~7.4). The TLR2/6 protein mixture was prepared by mixing 100 μ L of TLR2 and 100 μ L of TLR6 and vortexing for 30 seconds in a 1.5 mL microcentrifuge tube. The SPEs were placed in petri dishes with filter papers dampened with PBS buffer (pH \sim 7.4). A small drop of TLR 2/6 mixture (5 μ L) was dispensed onto each working electrode and then the petri dishes were sealed with parafilm and left in the fridge at 4 °C for 72 hours. The electrodes were rinsed with MQ water after the immersion and blown dried with nitrogen. An ethanolamine-tris buffer solution was prepared by dissolving 1.2 g of ethanolamine, 0.121 g tris(hydroxymethyl)aminomethane in 20 mL of MQ water. The pH of the solution was adjusted to 8.4 using concentrated hydrochloric acid. After the step of immobilizing TLR2/6 proteins, the electrode surfaces were immersed in ethanolamine solutions for 1 hour to deactivate the unreacted ester groups on the LPA monolayer.

Electrochemical Measurements. All electrochemical measurements were preformed in Faraday cages using DRP-CAC adapters for the SPE's being measured. CV, SWV, and EIS measurements were completed using CHI6055E potentiostats. The measurements were carried out in 10 mM HEPES buffer solutions with 5 mM K₄Fe(CN)₆ / 5 mM K₃Fe(CN)₆ redox couple and 1 M NaClO₄ as the supporting electrolyte. CV measurements were carried out in a window between -350 and 450 mV using a scan rate of 0.1 V/s. SWV was performed by scanning from -100 mV to 700 mV with a frequency of 15 Hz. Open-circuit potentials were always used for EIS measurement, which were conducted in the frequency range of 100000 to 0.1 Hz with an amplitude of 5 mV. The experimental EIS curves were evaluated to determine the film resistance using ZSimpWin 2.0 software. The exposure times for Pam2CSK4 and bacterial whole-cell samples were 5 and 15 minutes respectively. CV, SWV and EIS were always collected before and after exposure the sensors to the analytes.

Supporting Experimental Data

Figure S1. Characterization of sensor surfaces during preparation steps by (a) Cyclic voltammetry measuring bare gold surface (\blacksquare , black), surface after LPA modification((\blacktriangle , green), surface after TLR modification (\bullet , red), surface after blocking with ethanolamine (\blacktriangledown , blue) (b) Square wave voltammetry measuring bare gold surface (\triangleright , blue), surface after LPA modification(\blacktriangle , green), surface after TLR modification (\blacksquare , black), surface after blocking with ethanolamine (\bullet , red), (c) Nyquist plot measuring bare gold surface (\blacktriangledown , blue), surface after LPA modification(\bigstar , green), surface after TLR modification (\blacksquare , blue), surface after LPA modification (\blacksquare , blue), surface after LPA modification(\bigstar , green), surface after TLR modification (\blacksquare , black), surface after LPA modification(\bigstar , green), surface after TLR modification (\blacksquare , black), surface after LPA modification(\bigstar , green), surface after TLR modification (\blacksquare , black), surface after LPA modification(\bigstar , green), surface after TLR modification (\blacksquare , black), surface after LPA modification(\bigstar , green), surface after TLR modification (\blacksquare , black), surface after LPA modification(\bigstar , green), surface after TLR modification (\blacksquare , black), surface after plocking with ethanolamine (\bullet , red). The arrow insets show- the trend of the changes in voltammograms and impedance plots.

Figure S2. Comparison of TLR2/6 sensor responses to different concentrations of Pam2CSK4 (red, left bars), a Gram-positive bacterial PAMP, and *Salmonella* lipopolysaccharide (blue, right bars), a Gram-negative bacterial PAMP. The values are listed in **Table S1**.

Concentration (µg/ml)	ΔRct (%) Pam2CSK4	ΔRct (%) LPS	
0.1	24 ± 12 %	25 ± 7 %	
0.6	36 ± 13 %	31 ± 12 %	
1.3	56 ± 17 %	30 ± 13 %	
6.3	72 ± 26 %	30 ± 16 %	
12.7	12.7 97 ± 25 %		
63.6	167 ± 29 %	36 ± 7 %	

Table S1. TLR2/6 sensor responses to different concentrations of Pam2CSK4, a Gram-positive bacterial PAMP, and *Salmonella* lipopolysaccharide, a Gram-negative bacterial PAMP.

Figure S3. Plots of responses of TLR2/6 sensors to different strains of bacterial whole-cell cultures (1. *E. hirae* (ATCC 8043); 2. *B. licheniformis* (ATCC 12759); 3. *E. coli* (ATCC 25922)) with increasing concentration at a) 10² CFU/mL, b) 10⁴ CFU/mL and c) 10⁶ CFU/mL.

Targeted PAMP and	LOD	Bio-recognition	Electrode	Readout method	Reference
Triacylated	75		Gold	Electrochemical	Pof 2
linopontido	7.5 ug/ml		Gold	impedance	Rel. 2
iipopeptide	μg/111			inipedance	
Poly(I:C)	60		Gold	Electrochomical	Pof 2
POly(I.C)	ng/ml	ILNS	Golu	impodance	nel. 5
	iig/iii			inipedance	
Linonolycaccharida	0.0002		Cold	Electrochomical	Dof 4
Lipopolysacchanide	0.0002		Golu	impodance	Rel. 4
	EO/IIIL			inipedance	
Linonolycocobarida	1 ng/ml		Cold	Flastrashamical	Dof C
Lipopolysaccharide	T ug/mL	ILK4	Gold	Electrochemical	Ref. 5
				Impedance	
				spectroscopy	
Salmonella	1 lysed	ILR4	Gold	Electrochemical	Ref. 6
typhimurium (Lysed	cell/ml			impedance	
cell)				spectroscopy	
Lipopolysaccharide	2 ng/ml	TLR4	Indium	Electrochemical	Ref. 7
			Tin Oxide	impedance	
				spectroscopy	
Flagellin	3 ng/ml	TLR5	Indium	Electrochemical	Ref. 7
			Tin Oxide	impedance	
				spectroscopy	
Diacylated	100 nM	TLR2/TLR6	Gold	Electrochemical	This work
lipopeptide				impedance	
				spectroscopy	
Bacillus licheniformis	100	TLR2/TLR6	Gold	Electrochemical	This work
(whole-cell culture)	cell/ml			impedance	
				spectroscopy	

 Table S2. Comparison of different electrochemical TLR sensors and their corresponding analytes.

Figure S4. Calibration curves against different concentration of Pam2CSK4 obtained from TLR2/6 sensors stored under different conditions for 2 weeks: (a) 4 °C in PBS buffer, (b) -33 °C in 50 % v/v PBS/glycerol, (c & d) -80 °C PBS.

- 1. M. Howarth, W. H. Liu, S. Puthenveetil, Y. Zheng, L. F. Marshall, M. M. Schmidt, K. D. Wittrup, M. G. Bawendi and A. Y. Ting, *Nat. Methods*, 2008, **5**, 397-399.
- 2. Z. She, K. Topping, T. Ma, T. Zhao, W. Zhou, A. Kamal, S. Ahmadi and H.-B. Kraatz, *Anal. Chem.*, 2017, **89**, 4882-4888.
- 3. K. Amini, N. W. C. Chan and H.-B. Kraatz, Anal. Methods, 2014, 6, 3322-3328.
- 4. T. Y. Yeo, J. S. Choi, B. K. Lee, B. S. Kim, H. I. Yoon, H. Y. Lee and Y. W. Cho, *Biosens. Bioelectron.*, 2011, **28**, 139-145.
- 5. R. M. Mayall, M. Renaud-Young, N. W. C. Chan and V. I. Birss, *Biosens. Bioelectron.*, 2017, **87**, 794-801.
- R. M. Mayall, M. Renaud-Young, E. Gawron, S. Luong, S. Creager and V. I. Birss, ACS Sensors, 2019, 4, 143-151.
- 7. D. Lin, K. D. Harris, N. W. C. Chan and A. B. Jemere, *Sens. Actuator B-Chem.*, 2018, **257**, 324-330.