1	Supporting Information				
2	A ratiometric fluorescent biosensor for sensitive determination of α -				
3	glucosidase activity and acarbose based on N-doped carbon dots				
4					
5	Mengjun Wang, Mengke Wang, Feng Zhang, Xingguang Su*				
6	College of Chemistry, Jilin University, Changchun, 130012, PR China				
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20	*Corresponding author				
21	<i>Tel.:</i> +86-431-85168352				
22	<i>E-mail address:</i> <u>suxg@jlu.edu.cn</u> (X. Su).				

1 Reagents

2 Acarbose Hydrate, Adenosine (A), Branched polyethyleneimine (PEI, molecular weight = 3 10000) and Protamine (pro) were supplied by Shanghai Aladdin biochemical Co. Ltd. α-Glucosidase was purchased from Sigma Reagents Company. a-Arbutin was purchased from 4 Shanghai Macklin Biochemical Technology Co., Ltd. Hydroquinone, reduced L-glutathione 5 (GSH), trypsin (Try), hyaluronidase (HAase), bovine serum albumin (BSA), hemoglobin (Hb), 6 urease (Urea), lysozyme (Lys) and Human serum albumin (HSA) were ordered from Sangon 7 Biotech (Shanghai) Co. Ltd. NaH₂PO₄, Na₂HPO₄ and pepsin (pep) were obtained from Sino-8 9 pharm Co. (Shanghai, China). Phosphate buffer saline (PBS, 100 mmol L⁻¹) were prepared with different volume ratio of 400 mmol L⁻¹ NaH₂PO₄ and 400 mmol L⁻¹ Na₂HPO₄. Ultrapure water 10 with good resistivity ($\rho \ge 18 \text{ M}\Omega \text{ cm}^{-1}$) throughout this experiment was used. The pH values were 11 12 recorded by PHS-3C (Hangzhou, China). All chemicals are obtained from formal chemical suppliers and can be used directly without any further purification. 13

14 Instruments

The ultraviolet-visible (UV–vis) absorption spectra, Photoluminescence (PL) spectra and Fourier transform infrared (FT-IR) spectra were obtained by a Varian GBC Cintra 10e UV–vis Spectrophotometer (Shimadzu Co., Ltd. Japan), RF-5301 fluorescence spectrophotometer and Thermo Nicolet 360 FTIR spectrometer, respectively. Transmission electron microscope (TEM) was carried on JEM-2100F. Fluorescence lifetime data was obtained on Edinburgh FLS920.

20

21

2 Fig. S1 Fluorescence emission spectra of the N-CDs/ P_{HQ-PEI} system with various concentrations of

3 hydroquinone from 0 to 50 μ M (0, 0.5, 2, 5, 10, 20, 30, 40, 50 μ M).

Fig. S2 (a) Effect of enzyme pH on I₅₁₀/I₄₂₅. (b) Effect of enzyme reaction time between αglucosidase and α-arbutin. (c) Effect of enzyme temperature on I₅₁₀/I₄₂₅. (d) Effect of the α-arbutin
concentration on I₅₁₀/I₄₂₅.
concentration on I₅₁₀/I₄₂₅.

2 Fig. S3 (a) Fluorescent intensity ratio (I_{510}/I_{425}) response to different inhibitors: acarbose, rutin,

3 quercetin, quercitrin and isoquercitrin (160 µmol mL⁻¹).

Table S1 Comparison of our method with other methods for the determination of α -glucosidase

2					
	Detection methods	Materials	Linear range	LOD	References
			(U mL ⁻¹)	(U mL ⁻¹)	
	Ratiometric fluorescence	Dual-color carbon dots	0.13-6.70	0.036	[1]
	Ratiometric fluorescence	Ag nanoclusters/MnO ₂ nanosheet	0.2-8.0	0.03	[2]
	Electrochemistry	Pyrene boric acid	0-1.1	0.04	[3]
	Electrochemistry	Gold nanoparticle- modified gold electrode	0.1-1.1	0.04	[4]
	Colorimetry	Gold nanorods	0.0025-0.045	0.0005	[5]
	Fluorescence	Cationic Conjugated Polymers	0.1-0.5	0.01	[6]
	Ratiometric fluorescence	N-CDs/P _{HQ-PEI}	0.0002-0.0016	8.2×10 ⁻⁵	This work
4 5 6 7					
8 9					
10					
11					
12					
13					
14					
15					

1 References:

2	1.	X. Cheng, J. Xu, L. Wang, G. Xu, F. Wei, Y. Chai, Q. Hu and Y. Cen, Microchimica
3		<i>Acta</i> , 2019, 186 , 818.

- 4 2. M. Shi, Y. Cen, G. Xu, F. Wei, X. Xu, X. Cheng, Y. Chai, M. Sohail and Q. Hu, *Anal Chim Acta*, 2019, **1077**, 225-231.
- 6 3. J. Zhang, Y. Liu, X. Wang, Y. Chen and G. Li, *Biosens Bioelectron*, 2015, 74, 666-672.
- 7 4. J. Zhang, Y. Liu, J. Lv, Y. Cao and G. Li, *Microchimica Acta*, 2014, **182**, 281-288.
- 8 5. X. Cheng, Y. Huang, C. Yuan, K. Dai, H. Jiang and J. Ma, Sensors and Actuators B:
- 9 *Chemical*, 2019, **282**, 838-843.
- 10 6. A. Cao, Y. Tang and Y. Liu, ACS Appl Mater Interfaces, 2012, 4, 3773-3778.