Electronic Supplementary Information for

A red-emission fluorescent probe for visual monitoring of the lysosomal pH changes during mitophagy and cell apoptosis

Xiaodong Wang^a, Li Fan^{*a}, Xiaoran Zhang^b, Qi Zan^a, Wenjuan Dong^a, Shaomin Shuang^b and Chuan Dong^{*a}

^aInstitute of Environmental Science, Shanxi University, Taiyuan 030006, P. R. China ^bCollege of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China

*Corresponding author:

dc@sxu.edu.cn; fanli128@sxu.edu.cn Fax: +86-531-7011011; Tel: +86-531-7011011

Contents:

Scheme S1 Synthetic scheme of MSO

Scheme S2 Proposed sensing mechanism of MSO for pH

- Fig. S1 ¹H NMR, ¹³C NMR spectra and HR-MS analysis of compound 1 /compound 2 and MSO
- Fig. S2 Absorption spectra changes of MSO with the pH value reducing from 8.00 to 4.50
- Fig. S3 ¹H NMR-spectra of MSO at various pH values
- Fig. S4 Selectivity of MSO
- Fig. S5 Fluorescence intensity changes of MSO between pH 5.00 and 8.00
- Fig. S6 Photostability of MSO
- Fig. S7 Cytotoxic effect of MSO on HeLa cells

Scheme S1 Synthetic scheme of MSO.

Scheme S2 Sensing mechanism of MSO for pH.

Fig. S1 ¹H NMR,¹³C NMR spectra and HR-MS analysis of compound 1/compound 2 and MSO.

Fig. S2 Absorption spectra changes of MSO (25 μ M) with the pH value reducing from 8.00 to 4.50. Inset: the color of solution changes from colorless to pink with the pH decreasing.

Fig. S3 ¹H NMR titration spectra of **MSO** with decreasing pH from 7.40 (top) to 4.80 (bottom).

Fig. S4 Selectivity of **MSO** (10 μM) to different potential interfering substances in 40 mM B-R buffer solution at pH 8.00 and 5.00, respectively; (1): blank, (2): K⁺ (150 mM), (3): Na⁺ (150 mM), (4): Mg²⁺ (2 mM), (5): Ca²⁺ (2 mM), (6): Ba²⁺ (0.2 mM), (7): Cu²⁺ (0.2 mM), (8): Fe²⁺ (0.2 mM), (9): Fe³⁺ (0.2 mM), (10): Ni²⁺ (0.2 mM), (11): Zn²⁺ (0.2 mM), (12): Cl⁻ (10 mM), (13): SO₄²⁻ (0.2 mM), (14): SO₃²⁻ (0.2 mM), (15): NO⁻ (0.2 mM), (16): Ac⁻ (0.2 mM), (17): H₂O₂ (0.1 mM), (18): ClO⁻ (0.1 mM), (19): ¹O₂ (0.1 mM), (20): Cys (0.1 mM), (21): GSH (0.1 mM), (22): Hcy (0.1 mM), (23): Ala (0.1 mM), (24): His (0.1 mM), (25): Arg (0.1 mM), (26): Lys (0.1 mM), (27): Phe (0.1 mM), (28): Met (0.1 mM), (29): Leu (0.1 mM).

Fig. S5 Fluorescence intensity changes of **MSO** between pH 5.00 and 800. Conditions: $\lambda_{ex} = 574$ nm; $\lambda_{em} = 590$ nm.

Fig. S6 Changes in fluorescence emission of MSO with times at pH 5.00 and 8.00, respectively. Conditions: $\lambda_{ex} = 574$ nm; $\lambda_{em} = 590$ nm.

Fig. S7 Cell viability of **MSO** on HeLa cells by a standard MTT assay. 0, control; 1, 1 μ M; 2, 5 μ M; 3, 10 μ M; 4, 15 μ M; 5, 20 μ M. Data are expressed as mean values \pm standard error of the mean of three independent experiments, each performed in three triplicate.