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Table S1. Comparison of analytical performance of microfluidic devices 

Collection Detection Target Particles Sensitivity Specificity Speed POC*

Microfluidic 
Concentuaror

1

Liquid Sample

Enrichment in 
staggered 

herringbone mixer 

Fluoresce 
staining 
detection

Liquid
E. coli (Aq) 

Mycobacterium 
smegmatis (Aq) 

50 CFU/mL No 1 hour
No

Microscope

Microfluidic 
focusing 2

Liquid Sample

Microfluidic 
focusing and 

Fluoresce staining 
detection

Fluoresce 
staining 
detection

Airborne 
E. coli, 

Bacillus subtilis, 
Staphylococcus

~ 5,000 
CFU/mL No

Real-time 
excluding 

dye 
staining 
process

No

Flow 
cytometry

Quartz 
Crystal 

Microbalance
, QCM3

Liquid Sample

Microfluidic 
focusing 

QCM Liquid Vaccinia 
viruses (Aq)

40 
particles/mL No Real-time 

detection

No

QCM

Mass 
spectrometer 4

Liquid Sample

Paper 

Mass 
spectrometer

Liquid
P. aeruginosa 

S. aureus 
B. subtilis 

109CFU/mL Partially 
YES 24 hours

No

Portable Mass 
Spectrometer

*POC: Availability of Point of Care device 
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Table S2. Boundary conditions for iAC and biochip simulations

iAC

Boundary Condition Description Values

Inlet 1 Pressure Boundary
No viscous stress pair 0.1 MPa

Inlet 1 Pressure Boundary
No viscous stress psample 0 MPa

Outlet Pressure Boundary
No viscous stress Pout -

Wall Stationary Wall
No slip Wall 0 MPa

Biochip

Boundary Condition Description Values

Inlet Velocity Boundary
No viscous stress Uint

From 10-4 to 102 
m/sec

Outlet Velocity Boundary
No viscous stress Uout 0

Wall Stationary Wall
No slip Wall -
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Table S3. List of target airborne pathogens 

Size 
(m) Shape Surface Charge

(mV) Gram negative/ positive

~ 1 Rod - 21.9 E. coli Gram Negative

~ 1 Sphere - 9.6 Micrococcus luteus Gram Positive

~ 1 Rod -75 Bacillus subtilis Gram Positive

~ 10
Aggregated 

Spheres
- 40 Staphylococcus aureus Gram Positive
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Figure S1. 3D finite element analysis of iAQ. a) Geometry with boundary conditions, b) 

Computational mesh structure with 296,008 cells, and c) A representative result showing 

velocity profile and particle trajectory.
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Figure S2. iAC construction and operation: a) Cross-sectional image of the iAC (Scale = 

1cm) and b) Constructed iAC with a measurement gauge.
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Figure S3. FEA of the biochip showing the particle separation performance of the biochip. 

(a) Geometry effect on velocity distribution, particle (Diameter = 1m) trajectory (white line) 

and stream line (grey curves) at Vinlet = 0.01 m/sec in the biochip. (a) Particle trajectory and 

velocity field as a function of Re from 5 to 5,000 in the biochip (dp = 1m, L = 12 mm and d = 4 

mm). 
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Figure S4. Miniaturized PCB design to embed a Bluetooth module, a power module, a 

MCU, and a sensor.
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Figure S5.  Photocurrent change in the underneath CMOS detector as a function of optical 

density (OD) from 0 to 2 in the biochip.
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Figure S6.  Operation of the integrated airborne microparticle detection-process.
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Figure S7. Comparison of LODs in the cases of E. coli, Bacillus subtilis, Micrococcus luteus, 

and Staphylococcus in the integrated system of the airborne microparticle collector (Pair = 0.06 

MPa) and detector with a biochip (L = 1 cm and d = 0.5 cm) at Re = 50.
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