- Supporting Information -

Integrated on-site collection and detection of airborne microparticle for a smartphone based microclimate quality control

Byunghoon Ryu¹, Jay Chen², Katsuo Kurabayashi^{1,3,4*}, Xiaogan Liang^{1,3*}, Younggeun Park^{1,3*}

¹Department of Mechanical Engineering, University of Michigan, Ann Arbor MI, USA ²Ford Motor Company, Dearborn MI, USA ³Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor MI, USA ⁴Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor MI, USA

*Corresponding authors.

E-mail address: ygpark@umich.edu;

CONTENTS

Table S1. Comparison of analytical performance of microfluidic devices

Table S2. Boundary conditions for iAC and biochip simulations

Table S3. List of targeted airborne pathogen

Figure S1. 3D finite element analysis. a) Geometry with boundary conditions, b) Computational mesh structure with 296,008 cells, and c) A representative result showing velocity profile and particle trajectory.

Figure S2. iAC construction and operation: a) Cross-sectional image of the iAC (Scale = 1cm) and b) Constructed iAC with a measurement gauge.

Figure S3. FEA of the biochip showing the particle separation performance of the biochip.

Figure S4. Miniaturized PCB design to embed a Bluetooth module, a power module, a MPU, and a sensor.

Figure S5. Photocurrent change in the underneath CMOS detector as a function of optical density (OD) from 0 to 2 in the biochip.

Figure S6. Operation of the integrated airborne microparticle detection-process.

Figure S7. Calibration curves of (a) *Bacillus subtilis*, (b) *Micrococcus luteus*, and (c) *Staphylococcus* in the integrated system of the airborne microparticle collector ($P_{air} = 0.06$ MPa) and detector with a biochip (L = 1 cm and d = 0.5 cm) at Re = 500.

	Collection	Detection	Target Particles	Sensitivity	Specificity	Speed	POC*
Microfluidic Concentuaror	Liquid Sample Enrichment in staggered herringbone mixer	Fluoresce staining detection	Liquid E. coli (Aq) Mycobacterium smegmatis (Aq)	50 CFU/mL	No	1 hour	No Microscope
Microfluidic focusing ²	Liquid Sample Microfluidic focusing and Fluoresce staining detection	Fluoresce staining detection	Airborne E. coli, Bacillus subtilis, Staphylococcus	~ 5,000 CFU/mL	No	Real-time excluding dye staining process	No Flow cytometry
Quartz Crystal Microbalance , QCM ³	Liquid Sample Microfluidic focusing	QCM	Liquid Vaccinia viruses (Aq)	40 particles/mL	No	Real-time detection	No QCM
Mass spectrometer ⁴	Liquid Sample Paper	Mass spectrometer	Liquid P. aeruginosa S. aureus B. subtilis	10ºCFU/mL	Partially YES	24 hours	No Portable Mass Spectrometer

Table S1. Comparison of analytical performance of microfluidic devices

*POC: Availability of Point of Care device

IAC				
Boundary	Condition	Description	Values	
Inlet 1	Pressure Boundary No viscous stress	Pair	0.1 MPa	
Inlet 1	Pressure Boundary No viscous stress	p_{sample}	0 MPa	
Outlet	Pressure Boundary No viscous stress	Pout	-	
Wall	Stationary Wall No slip	Wall	0 MPa	
Biochip				
Boundary	Condition	Description	Values	
Inlet	Velocity Boundary No viscous stress	U_{int}	From 10 ⁻⁴ to 10 ² m/sec	
Outlet	Outlet Velocity Boundary No viscous stress		0	
Wall	Stationary Wall No slip	Wall	-	

Table S2. Boundary	conditions f	for iAC and	biochip	simulations
--------------------	--------------	-------------	---------	-------------

Size (µm)	Shape	Surface Charge (mV)		Gram negative/ positive
~ 1	Rod	- 21.9	E. coli	Gram Negative
~ 1	Sphere	- 9.6	Micrococcus luteus	Gram Positive
~ 1	Rod	-75	Bacillus subtilis	Gram Positive
~ 10	Aggregated Spheres	- 40	Staphylococcus aureus	Gram Positive

Figure S1. 3D finite element analysis of iAQ. a) Geometry with boundary conditions, b) Computational mesh structure with 296,008 cells, and c) A representative result showing velocity profile and particle trajectory.

Figure S2. iAC construction and operation: a) Cross-sectional image of the iAC (Scale = 1cm) and b) Constructed iAC with a measurement gauge.

b

Figure S3. FEA of the biochip showing the particle separation performance of the biochip.

(a) Geometry effect on velocity distribution, particle (Diameter = 1µm) trajectory (white line) and stream line (grey curves) at $V_{inlet} = 0.01$ m/sec in the biochip. (a) Particle trajectory and velocity field as a function of *Re* from 5 to 5,000 in the biochip ($d_p = 1$ µm, L = 12 mm and d = 4 mm).

MCU & Sensor

Figure S4. Miniaturized PCB design to embed a Bluetooth module, a power module, a

MCU, and a sensor.

Figure S5. Photocurrent change in the underneath CMOS detector as a function of optical density (OD) from 0 to 2 in the biochip.

Figure S6. Operation of the integrated airborne microparticle detection-process.

Figure S7. Comparison of LODs in the cases of *E. coli*, *Bacillus subtilis*, *Micrococcus luteus*, and *Staphylococcus* in the integrated system of the airborne microparticle collector ($P_{air} = 0.06$ MPa) and detector with a biochip (L = 1 cm and d = 0.5 cm) at Re = 50.

References

- 1. Choi J, Hong SC, Kim W, Jung JH. ACS Sensors 2017;2:513-21.
- 2. Choi J, Kang M, Jung JH. Scientific Reports 2015;5:15983.
- 3. Fronczek CF, Yoon JY. Journal of laboratory automation 2015;20:390-410.
- 4. Liu Q, Zhang Y, Jing W, Liu S, Zhang D, Sui G. The Analyst 2016;141:1637-40.