Supporting Information

In-situ Growth of Nano-Gold on Anodized Aluminum Oxide with Tandem

Nanozyme Activities Towards Sensitive Electrochemical Nanochannel Sensing

Xin Xia, Hui Li, Guoxing Zhou, Lei Ge,* and Feng Li*

College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao,

266109, People's Republic of China

*Corresponding author: Lei Ge, Feng Li

E-mail: lge@qau.edu.cn, lifeng@qust.edu.cn

Telephone: +86-532-86080855

Figure S1. The LSCM cross-sectional images of (A) bare AAO nanochannel and (B) PDA-AAO nanochannel.

Figure S2. Impact of the reaction time for (A) dopamine self-polymerization and (B) AuNPs growth on the ionic current response of Au-PDA-AAO nanochannel towards 10 μ M glucose at +1.0 V. (C) Impact of solution pH on the ionic current response of Au-PDA-AAO nanochannel towards 10 μ M glucose at +1.0 V.

Sensor	Linear range	Detection limit	Reference
Nanozyme-based sensor	0.4 to 80 mM	0.4 mM	1
Nanozyme-based sensor	1 µM to 0.3 mM	0.6 μΜ	2
Nanozyme-based sensor	$10~\mu M$ to $130~\mu M$	0.5 μΜ	3
Nanozyme-based sensor	$10~\mu M$ to $300~\mu M$	8.5 μΜ	4
Nanozyme-based sensor	5 µM to 1.2 mM	1.0 µM	5
Nanozyme-based sensor	$10~\mu M$ to $200~\mu M$	4.2 μΜ	6
Electrocatalysis-based sensor	1 µM to 10 mM	1.0 µM	7
Electrocatalysis-based sensor	30 to 500 µM	1.0 µM	8
Electrocatalysis-based sensor	0.005 to 31 mM.	1.0 µM	9
Electrocatalysis-based sensor	5.0 μ M to 2.0 mM	2.0 μΜ	10
Electrocatalysis-based sensor	$2 \ \mu M$ to $2.5 \ mM$	1.0 µM	11
Electrocatalysis-based sensor	0.005 to 3.0 mM	1.2 μΜ	12
Au-PDA-AAO nanochannel sensor	$0.5~\mu M$ to $50~\mu M$	0.2 μΜ	This work

Table S1. Assay performance comparison of our method with other enzyme-free glucose sensors.

References

(1) Zeng, D.; Luo, W.; Li, J.; Liu, H.; Ma, H.; Huang, Q.; Fan, C. Gold Nanoparticles-Based Nanoconjugates for Enhanced Enzyme Cascade and Glucose Sensing. *Analyst* **2012**, *137*, 4435-4439.

(2) Zhang, H.; Liang, X.; Han, L.; Li, F. "Non-Naked" Gold with Glucose Oxidase-Like Activity: A Nanozyme for Tandem Catalysis. *Small* **2018**, *14*, 1803256.

(3) He, X.; Tan, L.; Chen, D.; Wu, X.; Ren, X.; Zhang, Y.; Meng, X.; Tang, F.

Fe3o4–Au@Mesoporous Sio2 Microspheres: An Ideal Artificial Enzymatic Cascade System. *Chemical Communications* **2013**, *49*, 4643-4645.

(4) Huang, Y.; Zhao, M.; Han, S.; Lai, Z.; Yang, J.; Tan, C.; Ma, Q.; Lu, Q.; Chen, J.; Zhang, X.; Zhang, Z.; Li, B.; Chen, B.; Zong, Y.; Zhang, H. Growth of Au Nanoparticles on 2d Metalloporphyrinic Metal-Organic Framework Nanosheets Used as Biomimetic Catalysts for Cascade Reactions. *Advanced Materials* **2017**, *29*, 1700102.

(5) Han, L.; Zhang, H.; Chen, D.; Li, F. Protein-Directed Metal Oxide Nanoflakes with Tandem Enzyme-Like Characteristics: Colorimetric Glucose Sensing Based on One-Pot Enzyme-Free Cascade Catalysis. *Advanced Functional Materials* **2018**, *28*, 1800018.

(6) Hu, Y.; Cheng, H.; Zhao, X.; Wu, J.; Muhammad, F.; Lin, S.; He, J.; Zhou, L.; Zhang, C.; Deng, Y.; Wang, P.; Zhou, Z.; Nie, S.; Wei, H. Surface-Enhanced Raman Scattering Active Gold Nanoparticles with Enzyme-Mimicking Activities for Measuring Glucose and Lactate in Living Tissues. *ACS Nano* **2017**, *11*, 5558-5566.

(7) Guo, L.; Li, Z.; Marcus, K.; Navarro, S.; Liang, K.; Zhou, L.; Mani, P. D.; Florczyk, S. J.; Coffey, K. R.; Orlovskaya, N.; Sohn, Y.-H.; Yang, Y. Periodically Patterned Au-Tio2 Heterostructures for Photoelectrochemical Sensor. *ACS Sens.* **2017**, *2*, 621-625.

(8) Lin, T.-W.; Liu, C.-J.; Dai, C.-S. Ni3s2/Carbon Nanotube Nanocomposite as Electrode Material for Hydrogen Evolution Reaction in Alkaline Electrolyte and Enzyme-Free Glucose Detection. *Appl. Catal. B* **2014**, *154-155*, 213-220.

(9) Wang, L.; Zhu, W.; Lu, W.; Qin, X.; Xu, X. Surface Plasmon Aided High Sensitive Non-Enzymatic Glucose Sensor Using Au/Niau Multilayered Nanowire Arrays. *Biosensors and Bioelectronics* **2018**, *111*, 41-46.

(10) Choi, T.; Kim, S. H.; Lee, C. W.; Kim, H.; Choi, S.-K.; Kim, S.-H.; Kim, E.; Park, J.; Kim, H. Synthesis of Carbon Nanotube–Nickel Nanocomposites Using Atomic Layer Deposition for High-Performance Non-Enzymatic Glucose Sensing. *Biosensors and Bioelectronics* **2015**, *63*, 325-330.

(11) Liu, Y.; Teng, H.; Hou, H.; You, T. Nonenzymatic Glucose Sensor Based on Renewable Electrospun Ni Nanoparticle-Loaded Carbon Nanofiber Paste Electrode. *Biosens. Bioelectron.* **2009**, *24*, 3329-3334.

(12) Huo, H.; Zhao, Y.; Xu, C. 3d Ni3s2 Nanosheet Arrays Supported on Ni Foam for High-Performance Supercapacitor and Non-Enzymatic Glucose Detection. *Journal of Materials Chemistry A* **2014**, *2*, 15111-15117.