## **Supporting Information**

Sensitive Detection of Intracellular Telomerase Activity via Double

Signal Amplification and Ratiometric Fluorescence Resonance Energy

## Transfer

Bei Zhang, Lu Shi, Wei Liu, Baoxin Li, and Yan Jin \*

Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key

Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of

Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China

\* Corresponding author: Prof. Yan Jin, Email: jinyan@snnu.edu.cn.



Figure S1. (A) Analysis of telomerase activity by TRAP assay, (B) Gel electrophoresis of SDR reaction.



Figure S2. (A) DLS results of  $MnO_2NS$  and  $MnO_2NS/DNAs$ . (B) Zeta potential of  $MnO_2NS$  and  $MnO_2NS/DNAs$ . (C) UV-vis absorption spectra of  $MnO_2NS$  and  $MnO_2NS/DNAs$ .



Figure S3. (A) Fluorescence quenching of FAM-H1 by  $MnO_2NS$ . The concentrations of  $MnO_2NS$  increased from 0 to 63  $\mu$ g·mL<sup>-1</sup>. The concentration of FAM-H1, TAMRA-H2, A-DNA/T-DNA and TS were 100 nM, 100 nM, 50 nM, 20 nM respectively. (B) Fluorescence recovery induced by 2 mM GSH.



Figure S4. Adsorption analysis of DNA loading efficiency on  $MnO_2NS$ . (a) the UVvis absorption spectrum of FAM-H1, TAMRA-H2, A-DNA/T-DNA and TS; (b) the UV-vis absorption spectrum of supernate after the centrifugation of the DNA/MnO<sub>2</sub>NS mixture.



Figure S5. Cytotoxicity assay of MnO<sub>2</sub>NS with different concentrations to HeLa cells.



Figure S6. (A) Effect of the concentration of FAM-H1 and TAMRA-H2 on the FRET ratio, (B) Effect of the concentration of A-DNA/T-DNA on the FRET ratio, (C) Effect of the different kinds of buffer on the FRET ratio, (D) Effect of the reaction time for SDR on the FRET ratio.



Figure S7. Counterstaining assay for locating the distribution of telomerase in HeLa cells. The nuclear dye is DAPI.

| Name     | Sequence                             |
|----------|--------------------------------------|
| FAM-H1   | FAM-5'-                              |
|          | AAAATTAGGGTCTACCTTCAACACACAAGGTAGA   |
|          | CCCTAACCCTAACT-3'                    |
| TAMRA-H2 | 5'-                                  |
|          | ACCTTCAACACACAAGGAGTTAGGGTCTACCTTG   |
|          | TGTGTTGAAGGTAGACCCTAA-3'-TAMRA       |
|          | 5'-                                  |
| A-DNA    | CCTAACCCTAACCCTAACCCTAACTCTGCTCCTAT  |
|          | -3'                                  |
| T-DNA    | 5'-AGTTAGGGTTAGGGTCTACCTT-3'         |
| TS       | 5'-AATCCGTCGAGCAGAGTT-3'             |
| ACX      | 5'-GCGCGGCTTACCCTTACCCTTACCCTAACC-3' |

Table S1. Sequences of the oligonucleotides used in the experiment.

| Analytical Method                    | Linear range                              | Detection limit    | Refs                   |
|--------------------------------------|-------------------------------------------|--------------------|------------------------|
| Fluorometric assay                   | 2000–40000 HeLa cells                     | 220 HeLa<br>cells  | (Hong et<br>al., 2016) |
| Fluorometric assay                   | 200–100000 HeLa cells                     | 200 HeLa<br>cells  | (Tian et al.,<br>2013) |
| Fluorometric assay                   | 500–10000 HeLa cells                      | 185 HeLa<br>cells  | (Zhu et al.,<br>2015)  |
| Fluorometric assay                   | 50–2000 HeLa cells                        | 30 HeLa cells      | (Zhu et al.,<br>2018)  |
| Fluorometric assay                   | 50–1000 HeLa cells                        | 33 HeLa cells      | (Yang et<br>al., 2017) |
| Chemiluminescence                    | 100–1000 HeLa cells                       | 100 HeLa<br>cells  | (Li et al.,<br>2011)   |
| Chemiluminescence                    | -                                         | 500 HeLa<br>cells  | (Xiao et al.,<br>2004) |
| Colorimetry                          | $5 \times 10^3$ -10 <sup>6</sup> cells/mL | 100 HeLa<br>cells  | (Feng et<br>al., 2019) |
| Colorimetry                          | 500–1000 HeLa cells                       | 25 HeLa cells      | (Yu et al.,<br>2018)   |
| Electrochemical assay                | 50–50×10 <sup>5</sup> cells/mL            | 20 HeLa cells      | (Ling et al.,<br>2020) |
| Electrochemical assay                | 300–1.04×10 <sup>7</sup> HeLa<br>cells/mL | 8.20 HeLa<br>cells | (Wang et al., 2020)    |
| Electrochemiluminesce<br>nce         | 100–9×10 <sup>3</sup> HeLa cells          | 62 HeLa<br>cells   | (Zhang et al., 2014a)  |
| Electrochemiluminesce<br>nce         | 313–1×10 <sup>4</sup> HeLa cells          | 148 HeLa<br>cells  | (Zhang et al., 2014b)  |
| Surface-Enhanced<br>Raman Scattering | 1-1000 HeLa cells                         | 10 HeLa cells      | (Li et al.,<br>2019)   |
| This work                            | 20–1000 HeLa cells                        | 20 HeLa cells      | -                      |

Table S2. Comparison of the analytical performance for telomerase activity detection.

## References

Hong, M., Xu, L. D., Xue, Q. W., Li, L., Tang, B., 2016, Anal. Chem. 88, 12177-12182.

- Li, Y., Li, X., Ji, X., Li, X., 2011, Biosens. Bioelectron. 26, 4095-4098.
- Tian, T., Peng, S., Xiao, H., Zhang, X. E., Guo, S., Wang, S. R., Zhou, X., Liu, S. M., Zhou, X., 2013, Chem. Commun. 49, 2652-2654.
- Xiao, Y., Pavlov, V., Niazov, T., Dishon, A., Kotler, M., Willner, I., 2004, J. Am. Chem. Soc. 126, 7430-7431.
- Yang, H. T., Liu, A. R., Wei, M., Liu, Y. J., Lv, B. J., Wei, W. Y., Zhang, J., Liu, S. Q., 2017, Anal. Chem. 89, 12094-12100.
- Zhu, G., Yang, K., Zhang, C. Y., 2015, Chem. Commun. 51, 6808-6811.
- Zhu, X. L., Ye, H. Y., Liu, J. W., Yu, R. Q., Jiang, J. H., 2018, Anal. Chem. 90, 13188-13192.
- Feng, E. D.; Zheng T. T.; Tian Y., 2019. ACS Sens. 4, 211-217.
- Yu, T.; Zhao, W.; Xu, J. J.; Chen, H. Y., 2018. Talanta 178, 594-599.
- Ling, P. H.; Qian, C. H.; Yu, J. J.; Gao, F., 2020. Biosens. Bioelectron. 149, 111838.
- Wang, L.; Meng, T. j.; Zhao, D.; Jia, H. X.; An, S. y.; Yang, X. j.; Wang, H.; Zhang,
- Y. F. 2020, Biosens. Bioelectron. 148, 111834.
- Zhang, H.-R., Wang, Y.-Z., Wu, M.-S., Feng, Q.-M., Shi, H.-W., Chen, H.-Y., Xu, J.-
- J., 2014. Chem. Commun. 50, 12575-12577.
- Zhang, H.-R., Wu, M.-S., Xu, J.-J., Chen, H.-Y., 2014. Anal. Chem. 86, 3834–3840.

Li, Y.; Han, H. X.; Wu, Y. D.; Yu, C. F.; Ren, C. N.; Zhang, X. R., 2019. Biosens. Bioelectron. 142, 111543