Supporting information

Two-dimensional MXene modified AgNRs as surface-enhanced Raman scattering substrate for sensitive determination of polychlorinated biphenyls

Xuejiao Fang^{a1}, Yuhang Song^{b1}, Yi Huang^a, Guohai Yang^{a*}, Caiqin Han^b, Haitao Li^a, Lulu Qu^{a*}

^a School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China.

^b Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.

* Corresponding author. E-mail address: yangguohai@jsnu.edu.cn; luluqu@jsnu.edu.cn

¹ These authors contribute equally to this work.

Fig. S1. (A-F) The elemental maps of C, F, O, Ti, Ag obtained from the AgNR/MXene substrate.

Fig. S2. (A) SERS spectra of R6G (1.0×10^{-5} M) obtained from the AgNR substrates and AgNR/MXene substrates; (B) Intensity distribution of the bands at 769 cm⁻¹ and 1362 cm⁻¹ obtained from the above SERS signals.

Fig. S3. SERS spectra of AgNR/MXene.

Fig. S4. SERS spectra of PCB-1, PCB-3, PCB-77 and the mixture of PCB-1, PCB-3 and PCB-77.

Fig. S5. SERS spectra of soil without any treatment.

Fig. S6. (A) Raman spectra of PCBs obtained from single-component soil sample: soil 1 original sample; spiked with 1.0×10^{-6} M of PCB-3 to the soil 1 (soil 2); spiked with 1.0×10^{-6} M of PCB-77 to the soil 1 (soil 3). (B) Raman spectra of PCBs obtained from multi-component soil sample: spiked with 1.0×10^{-6} M of PCB-3 and PCB-77 mixture to the soil 1 (soil 4).

Table S1. Comparison of the AgNR/MXene-based SERS with other methods for

detection PCBs.

Methods	High sensitivity	Low cost	Fast detection	References
Gas chromatography	\checkmark	×	×	1

gas Chromatography- mass spectrometry	\checkmark	×	×	2,3
Enzyme-linked immunoassay	\checkmark	×	\checkmark	4,5
Our method (AgNR/MXene)		\checkmark		

Table S2. Comparison of the AgNR/MXene substrates with other SERS substrates

Methods	Polychlorinated Biphenyls	LOD	Reference
GO wrapped flower-like Ag microparticles (Ag@GO)	PCB-3		6
	PCB-77	1.0 × 10 ⁻⁴ M	
AgNPs @ PAN-nanohump	PCB-77	$1.0 \times 10^{-5} \mathrm{M}$	7
AgNPs-decorated Au-fractal patterns	PCB-77	$1.0 imes 10^{-6} \mathrm{M}$	8
Ag nanosheet-assembled micro-hemispheres modified with HS-β-CD	PCB-77	1.0 × 10 ⁻⁷ M	9

for detection of PCBs.

β-CD coated SiO ₂ @Au@Ag core-shell nanoparticles	PCB-3		
	PCB-77	$1.0 \times 10^{-7} \mathrm{M}$	10
	PCB-29		
Our method	PCB-3	$1.0 imes 10^{-8} \mathrm{M}$	
(AgNR/MXene)	PCB-77	$1.0 \times 10^{-9} \mathrm{M}$	

References:

- 1 Z. Y Gu, J. Q. Jiang and X. P. Yan, Anal. Chem., 2011, 83, 5093-5100.
- 2 G. Ottonello, A. Ferrari and E. Magi, Food Chem., 2014, 142, 327-333.
- 3 Z. Zhang and S. M. Rhind, Talanta, 2011, 84, 487-493.

4 L. Wu, X. Lu, J. Jin, H. Zhang and J. Chen, *Biosens. Bioelectron.*, 2011, 26, 4040-4045.

5 Z. Yan, N. Gan, D. Wang, Y. Cao, M. Chen, T. Li and Y. A. Chen, *Biosens*. *Bioelectron.*, 2015, **74**, 718-724.

6 C. Y. Zhang, R. Hao, B. Zhao, Y. Fu, H. Zhang, S. Moeendarbari, C. S. Pickering,Y. W. Hao and Y. Q. Liu, *Appl. Surf. Sci*, 2017,400, 49-56.

7 Z. Li, G. Meng, Q. Huang, X. Hu, X. He, H. Tang, Z. Wang and F. Li, *Small*, 2015, **11**, 5452-5459.

8 C. Hou, G. Meng, Q. Huang, C. Zhu, Z. Huang, B. Chen, and K. Sun, *Chem. Commun*, 2014, **50**, 569-571.

9 C. Zhu, G. Meng, Q. Huang, Z. Li, Z. Huang, M. Wang and J. Yuan, *J. Mater Chem*, 2012, **22**, 2271-2278.

10 Y. Lu, G. Yao, K. Sun, and Q. Huang, Phys. Chem. Chem. Phys, 2015, 17, 21149-

21157.