Electronic Supplementary Information (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2020

Facile synthesis of daisy-like MoS₂ nanostructure for sensitive electrochemical biosensing application

Zhongfang Hu,^a Rong Xu,^a Suhua Yu,^b Juan Li,^{a,*} Zhanjun Yang^{a,b}

^aSchool of Chemistry and Chemical Engineering, Guangling College, Yangzhou University, Yangzhou

225002, P.R. China

^bGuangling College, Yangzhou University, Yangzhou 225002, PR China.

Effects of solution scan rate and pH on the electrochemical behavior at the GOx/MoS₂/chitosan modified GCE.

Figure S1 (A). Cyclic voltammograms of GOx/MoS₂/chitosan in 0.1 M N₂-saturated PBS (pH=7.0) at 10, 20, 50, 80, 100, 150 and 200 mV s⁻¹ (a-g), inset I: plot of anodic and cathodic peak currents vs. scan rates, inset II: plot of logarithm of ipc vs. logarithm of V and (B) cyclic voltammograms of GOx/MoS₂/chitosan in N₂-saturated PBS with different pH values of 5.0, 6.0, 7.0, 8.0 and 9.0 at a scan rate of 100 mV s⁻¹ (a-e), inset I: plot of anodic and cathodic peak currents vs. pH, inset II: plot of formal potentials vs. pH.

Comparison between this glucose biosensor and others previous glucose biosensors reported in recent literatures.

Electrode	Applied potential (V)	Sensitivity (mA M ⁻¹ cm ⁻²)	Detection limit (mM)	Linear range (mM)	Reference
GOx/ nanorod-like MoS ₂ / chitosan	-0.45	25.06	0.005	0.015-0.325	This Work
/GCE	-0.43	25.00	0.005	0.325-1.43	THIS WORK
GOx/CoS-MWCNTs/Nafion/GCE	-0.43	14.96	0.005	0.008-1.5	S1
GOx/SnS ₂ /Nafion/GCE	-0.45	7.6	0.01	0.025-1.1	S2
Nifion/GOx/silver-ZnO/GCE	-0.37	18.7	0.007	0.01-1.5	S3
GOx/cage-like PbS/Nafion/GCE	-0.45	11.02	0.01	0.15-1.45	S4
GOx/CNT-AuNPs-ZnSHSs/GCE	+0.50	_	0.01	0.02-7.0	S5
GOx/G-CdS/GCE	-0.335	1.76	0.7	2-16	S6
GOD/chitosan/a-ZrP	-0.435	_	0.076	0.25-0.8	S7

Table S1 Comparison of analytical performance between GOx/nanorod-like MoS₂/CS/GCE and

other modified electrodes

MWCNTs: Multi-walled carbon nanotubes G: graphene AuNPs: Au nanoparticles HSs: hollow spheres HNPs: Hybrid nanorods

S1. J. Li, Y. Liu, X. Tang, L. J. Xu, L. F. Min, Y. D. Xue, X. Y. Hu, Z. J. Yang, *Microchim. Acta*, 2020, **187**, 80.

S2. Z. J. Yang, Y. Y. Ren, Y. C. Zhang, J. Li, H. B. Li, X. C. Huang, X. Y. Hu, Q. Xu, *Biosens*. *Bioelectron.*, 2011, 26, 4337-4341.

S3. J. Li, M. M. Lu, Z. N. Tan, Y. B. Xu, Y. C. Zhang, X. Y. Hu, Z. J. Yang, *Microchim. Acta*, 2016, **183**, 1705-1712.

S4. J. Li, Y. Tang, J. Yang, Z. J. Yang, Y. C. Zhang, X. Y. Hu, Sens. Actuators, B: Chem., 2014, 190, 549-554.

S5. Y. Shuai, C. Liu, J. Wang, X. Cui, L. Nie, Analyst, 2013, 138, 3259-3263.

S6. K. Wang, Q. Liu, Q. M. Guan, J. Wu, H. N. Li, J. J. Yan, *Biosens. Bioelectron.*, 2011, 26, 2252-2257.
S7. L. M. Liu, J. W. Wen, L. J. Liu, D. Y. He, R. Y. Kuang, T. Q. Shi, *Anal. Biochem.*, 2013, 445, 24-29.