Electronic Supplementary Information

A new chemosensor for cyanide in blood based on the Pd complex of 2-(5-bromo-2-pyridylazo)-5-[N-n-propyl-N-(3-sulfopropyl)amino]phenol \dagger

Yasuhiro Morikawa, Keiji Nishiwaki, Shigeo Suzuki, Naoyuki Yasaka, Yuto Okada and Isao Nakanishi

Experimental Section

Preparation of solutions with specific pHs

Various pH solutions of PAPS-Pd were prepared by mixing 0.1 mL of PAPS (1 mM) in pure water with 0.1 mL of PdCl₂ (1 mM) in 0.2% hydrochloric acid and diluting in a 10 mL measuring flask with 0.1 M buffer (pH 1 to 13). A buffer solutions were prepared as follows. A solution with pH 1 was prepared with 0.1 M hydrochloric acid. A series of buffers with pH 2 to 6 were prepared by Hydrochloric acid was added to 10 mL of 1 M sodium dihydrogen phosphate to make the total volume to 100 mL. A series of buffers with pH 6.5 to 11 were prepared by 6 M hydrochloric acid was added to 10 mL of 1 M sodium to make the total volume to 100 mL. A buffers with pH 12 and 13 were prepared by 30% sodium hydroxide solution was added to 10 mL of 1 M sodium carbonate solution to make the total volume to 100 mL of 1 M sodium carbonate solution to make the total volume to 100 mL of 1 M sodium carbonate solution to make the total volume to 100 mL of 1 M sodium carbonate solution to make the total volume to 100 mL of 1 M sodium carbonate solution to make the total volume to 100 mL of 1 M sodium carbonate solution to make the total volume to 100 mL of 1 M sodium carbonate solution to make the total volume to 100 mL of 1 M sodium carbonate solution to make the total volume to 100 mL of 1 M sodium carbonate solution to make the total volume to 100 mL of 1 M sodium carbonate solution to make the total volume to 100 mL of 1 M sodium carbonate solution to make the total volume to 100 mL of 1 M sodium carbonate solution to make the total volume to 100 mL of 1 M sodium carbonate solution to make the total volume to 100 mL of 1 M sodium carbonate solution to make the total volume to 100 mL of 1 M sodium carbonate solution to make the total volume to 100 mL of 1 M sodium carbonate solution to make the total volume to 100 mL of 1 M sodium carbonate solution to make the total volume to 100 mL of 1 M sodium carbonate solution to make the total volume to 100 mL of 1 M sodium carbonate solution to make the total volume to 100 mL of 1 M sodium carbonate s

Job's plot measurement

For PAPS and Pd^{2+} : A 20 μ M solution of PAPS was prepared by dissolving in a 65:35 (v/v) mixture of 1 M sodium carbonate/1 M sodium bicarbonate. Similarly, 20 μ M solution of Pd^{2+} (PdCl₂) was prepared by dissolving in 0.2% hydrochloric acid. Mixture solutions (2.0 mL) of PAPS and Pd^{2+} at 11 different ratios from 0:2 to 2:0 (v/v) were prepared. After the solutions were allowed to stand for 30 min, the absorbance at 570 nm was measured at room temperature. The absorbance values obtained were plotted against $[Pd^{2+}]/([PAPS] + [Pd^{2+}])$, and the complex formation ratio was estimated from the abscissa at the maximum absorbance.

For PAPS-Pd and CN⁻: Each 20 μ M PAPS-Pd and CN⁻ (KCN) solution was prepared by diluting stock solutions. Mixture solutions (2.0 mL) of PAPS-Pd and CN⁻ with nine different ratio from 0:2 to 2:0 (v/v) were prepared. After the solutions were allowed to stand for 30 min, the absorbance at 450 nm was measured at room temperature. The absorbance values obtained were plotted against [CN⁻]/([PAPS-Pd] + [CN⁻]), and the complex formation ratio was estimated from the abscissa at the maximum absorbance.

UV-vis measurement of mixtures of PAPS-Pd and cyanide

The stock solution of PAPS-Pd (100 $\mu\text{M},$ 0.3 mL) was mixed with 2.7 mL of water to make the final

concentration of 10 μ M, and mixed with 6–72 μ L of 2 mM CN⁻. After mixing the solution for several seconds, UV-vis spectra were measured at room temperature.

Measurement of CN⁻ in blood samples by König reaction as the reference

 CN^- -spiked blood (10, 20, and 30 μ M) was applied to the König reaction according to the procedure reported by Epstein.⁵¹ A Conway cell was used for the reaction. Briefly, the solution (0.5 mL) after microdiffusion was placed into a test tube. The chloramine T solution (0.1 mL) was added to the test tube and left for 2 min. Then, the pyridine-pyrazolone reagent (1.5 mL) was added to the test tube. After 40 min, UV-vis spectra were measured. Standard CN^- solutions were used for preparation of a calibration curve.

Fig. S1. ¹H NMR spectra of PAPS, PAPS-Pd, and PAPS-Pd with addition of CN^- (0.5–5 equiv.) in D₂O. The red arrows indicated the proton on the 6-position of the pyridine ring.

Fig. S2. Job's plot used to determine the complexation ratio between PAPS and Pd²⁺. Corrected absorbance is the difference between measured absorbance (A_{obs}) at 572 nm and the product of the molar extinction coefficient of PAPS (ε_{PAPS}) and the initial molar concentration ([PAPS]); Corrected absorbance = $A_{obs}-\varepsilon_{PAPS}$ [PAPS].

Fig. S3. Job's plot for the binding of CN⁻ with PAPS-Pd. Corrected absorbance was plotted as a function of the molar ratio of $[CN^-]/([PAPS-Pd] + [CN^-])$ and the total concentration of PAPS-Pd + CN⁻ was 20 μ M. Corrected absorbance is the difference between the measured absorbance (A_{obs}) at 450 nm and the product of the molar concentration of PAPS-Pd ($\varepsilon_{PAPS-Pd}$) and the initial molar extinction coefficient ([PAPS-Pd]); Corrected absorbance = A_{obs} - $\varepsilon_{PAPS-Pd}$ [PAPS-Pd].

Fig. S4. Reversible switching cycles of absorbance at 450 nm by alternate addition of Pd^{2+} ions and CN^{-} in pH 10.2 carbonate buffer. The inset shows the color of the solution at each cycle in the switching cycle.

Fig. S5. Absorbance at 450 nm (a) and colour changes (b) of PAPS-Pd and a 1:4 mixture of PAPS-Pd and CN^- at different pH values (1–13).

Fig. S6. Absorbance at 450 nm (a) and 572 nm (b) of calibration curve of PAPS-Pd (10 μ M) as a function of the concentration of CN⁻ (0–48 μ M)

Fig. S7. The fluorescence change of PAPS-Pd (10 μ M) in the presence of different concentrations of CN⁻ (0–50 μ M) in pH 10.2 carbonate buffer.

Fig. S8. UV-Vis spectra of PAPS-Pd (10 μ M) with 30 μ M of various anions (a) and that of a mixture of 30 μ M of CN⁻ (b) in pH 10.2 carbonate buffer.

0.01	0.03	0.05	0.1	0.5	1	2	4	8
-		-				-	, <u> </u>	-
-						(march)	(ClO⁻ : I	mM)

Fig. S9. Color changes of PAPS-Pd (10 μ M) in the presence of different concentrations of ClO⁻ in pH 10.2 carbonate buffer.

Fig. S10. Color changed of PAPS-Pd (10 μ M) in the presence of different concentrations of S²⁻ in pH 10.2 carbonate buffer.

Fig. S11. UV-vis spectra of PAPS-Pd (10 μ M) with different concentrations of S²⁻ in pH 10.2 carbonate buffer.

Fig. S12. Comparison of the CN⁻ quantitative value between control and CO saturated whole blood.

Fig. S13. Regression analysis for detected concentration of CN⁻ in whole blood by the König reaction and this work.