Supporting Information

A ratiometric nanoprobe based on carboxylated graphitic carbon nitride nanosheets and Eu³⁺ for the detection of tetracyclines

Mengru Ti^a, Yasi Li^a, Zhongqiu Li^c, Dongxu Zhao^a, Li Wu^{a,b*}, Longfei Yuan^{a,d*} and

Yujian He^{a,b*}

^a School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

^b State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China

^c College of Chemical and Pharmaceutial Engineering (CCPE), Hebei University of Science and Technology, Shijiazhuang 050000, China

^d State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.

* Corresponding authors at: School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquanlu, Beijing 100049, China.

E-mail address: wuli@ucas.ac.cn (L. Wu), yuanlongfei@ioz.ac.cn (L. Yuan), heyujian@ucas.ac.cn (Y. He).

 $\label{eq:Fig.S1} \textbf{FT-IR spectrum of C-g-}C_3N_4 \text{ (a) and g-}C_3N_4 \text{ (b)}.$

Fig. S2 (A) Long storage stability of the C-g-C₃N₄: freshly prepared (a) and after two month (b). (B) Effect of ionic strength on the fluorescence response of the C-g-C₃N₄. Error bars represent the standard deviation of three measurements.

Fig. S3 Emission (a) and excitation (b) spectra of C-g- C_3N_4 and UV-vis absorption of TC (c).

Fig. S4 Effects of TC on the fluorescence intensity of the C-g-C₃N₄ ([C-g-C₃N₄] = $1.45\mu g/mL$, $\lambda_{ex} = 360 nm$).

Analytical methods	Material	Linear range (µM)	LOD(nM)	Real sample	Ref
FL enhancement	AgNPs	0.01 - 10	4	Milk	[1]
CE	Phenyl silica adsorbent	0.06 - 0.6	20	Milk	[2]
Ratiometric FL	GQDs	0 - 20	8.2	River water and Milk	[3]
FL quenching	Carbon nanoparticles	0.06 - 8	7.5	Urine and Pharmaceutic al preparations	[4]
FL enhancement	DNA-AuNCs	0.01 - 5	4	Human urine and Milk	[5]
Photoelectroche mical	C ₃ N ₄ -CdS quantum dots	0.01 - 0.25	5.3	Environment al water	[6]
Ratiometric FL	CDs	0 - 7.87	11.7	Tap water and Lake water	[7]
Ratiometric FL	SiNPs	0.2 - 20	3	Nature water samples and Milk	[8]
Ratiometric FL	AuNCs	0.01 - 60	4	human serum and water	[9]
FL enhancement	AgNPs-SiO ₂	0 - 6	83.1	tap water	[10]
Ratiometric FL	Dye@UiO- 66@SiO ₂ -Cit-Eu	0.1 - 6	17.9	Milk and Honey	[11]
Ratiometric FL	C-g-C ₃ N ₄	0.01 - 40	7.7	Milk and Soil	This work

 Table S1
 Comparison of various methods for the detection of TC.

References

[1] H. Tan and Y. Chen, Sens. Actuators, B, 2012, 173, 262-267.

[2] I. S. Ibarra, J. A. Rodriguez, J. M. Miranda, M. Vega and E. Barrado, *J. Chromatogr. A*, **2011**, *1218*, 2196-2202.

[3] W. Li, J. Zhu, G. Xie, Y. Ren and Y. Q. Zheng, Anal. Chim. Acta, 2018, 1022, 131-137.

[4] X. Yang, Y. Luo, S. Zhu, Y. Feng, Y. Zhuo and Y. Dou, Biosens. Bioelectron., 2014, 56, 6-11.

[5] X. Yang, S. Zhu, Y. Dou, Y. Zhuo, Y. Luo and Y. Feng, Talanta, 2014, 122, 36-42.

[6] Y. Liu, K. Yan and J. Zhang, ACS Appl. Mater. Interfaces, 2016, 8, 28255-28264.

[7] Z. Shen, C. Zhang, X. Yu, J. Li, Z. Wang, Z. Zhang and B. Liu, J. Mater. Chem. C, 2018, 6, 9636-9641.

[8] W. Wei, J. He, Y. Wang and M. Kong, *Talanta*, **2019**, *204*, 491-498.

[9] Y. Li, Q. Du, X. Zhang and Y. Huang, *Talanta*, **2020**, *206*, 120202.

- [10] P. Li, S. Kumar, K. S. Park and H. G. Park, *RSC Adv.*, **2018**, *8*, 24322-24327.
- [11] L. Jia, S. Guo, J. Xu, X. Chen, T. Zhu and T. Zhao, Nanomaterials, 2019, 9-19.