1	Supporting information
2	Fe-N-C single-atom nanozymes with peroxidase-like activity for the
3	detection of alkaline phosphatase
4	Xiaolei Xie ^a , Yufei Wang ^b , Xiaobin Zhou ^a , Junyang Chen ^a , Mengke Wang ^a , Xingguang Su ^a *
5	^a College of Chemistry, Jilin University, Changchun, 130012, PR China
6	^b State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University,
7	Changchun 130012, PR China
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	*Corresponding author
20	<i>Tel.:</i> +86-431-85168352
21	<i>E-mail address:</i> <u>suxg@jlu.edu.cn</u> (X. Su).

1

2 Fig. S1. UV-vis absorption spectra of peroxidase-like activity of Fe/NC-SAs system with

3 substrates of TMB. Inset was the corresponding photos under visible light.

2 Fig. S2. Influence of pH (A), reaction temperature (B), concentrations of Fe/NC-SAs(C) on the

- $\label{eq:activity} activity of Fe/NC-As in TMB+H_2O_2/Fe/NC-As system.$
- 4

2 Fig. S3. UV-vis absorption spectra of ALP detection system based on Fe/NC-SAs. Inset was the

³ corresponding photos under visible light.

Fig. S4. Influence of concentrations of AAP (A), reaction time (B) on the relative absorbance
(A/A₀) of ALP detection system based on Fe/NC-SAs. A was the sample absorbance and A₀ were
the absorbance at zero concentration (A) and initial time (B).

Fig. S5. (A) UV-vis absorption spectra of pNPP with varied amounts of ALP addition. The
concentration PNPP was 1 mM and reaction time was 50 minutes. (B) Photographs of the
pNPP/ALP enzymatic reaction solutions with various concentrations of ALP taken under the
visible light. (C) Plots of the absorbance of the assay based on pNPP/ALP versus ALP activity at
405 nm. (D) The measured results of pNPP/ALP were compared with that obtained by Fe/NC-SAs
system.

Biosensing materials	Analytical	Linear range (U	LOD (U	Reference
	method	L ⁻¹)	L ⁻¹)	
Cu(BCDS) ₂ ²⁻	Fluorescent	0-220	0.27	1
Carbon quantum dots	Fluorescent	16.7-782.6	1.1	2
PB NCs	Colorimetry	0.6-6	0.23	3
Ce(IV) ions	Colorimetry	50-250	2.3	4
MnFe ₂ O ₄	Colorimetry	0.6-55	0.27	5
FeCo NPs	Colorimetry	0.6-10	0.49	6
Fe/NC-SAs	Colorimetry	0.1-1.5	0.05	This work

_

1 Table S1 Comparison of several previously reported ALP sensors

2

References

2	1.	Y. Mei, Q. Hu, B. Zhou, Y. Zhang, M. He, T. Xu, F. Li and J. Kong, <i>Talanta</i> , 2018, 176 ,
3		52-58.
4	2.	G. Liu, J. Zhao, S. Wang, S. Lu, J. Sun and X. Yang, Sensors and Actuators B:
5		<i>Chemical</i> , 2020, 306 , 127583.
6	3.	T. Wu, W. Hou, Z. Ma, M. Liu, X. Liu, Y. Zhang and S. Yao, <i>Microchimica Acta</i> , 2019,
7		186 : 123.
8	4.	H. Song, H. Wang, X. Li, Y. Peng, J. Pan and X. Niu, Analytica Chimica Acta, 2018,
9		1044 , 154-161.
10	5.	X. Niu, K. Ye, Z. Li, H. Zhao, L. Wang, J. Pan, H. Song and M. Lan, Journal of Analysis
11		<i>and Testing</i> , 2019, 3 , 228-237.
12	6.	T. Wu, Z. Ma, P. Li, M. Liu, X. Liu, H. Li, Y. Zhang and S. Yao, <i>Talanta</i> , 2019, 202,
13		354-361.
14		