
Electronic Supplementary Material (ESI) for Analyst. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information (ESI) Portable, Low Cost and Sensitive Cavity Enhanced Absorption (CEA) Detection

Andrew Teggert ^a, Harish Datta^{a,b}, Stephen McIntosh^c, Barry Warden^c, Simon Bateson^d, Fathi Abugchem^d and Zulfiqur Ali^{d†},

^dHealthcare Innovation Centre, School of Health and Life Sciences, Teesside University, Middlesbrough, Tees Valley, TS1 3BX, UK Corresponding author: Z. Ali[†] (z.ali@tees.ac.uk)

Fig. S1 (A) Simulation of a fibre source, including ball lenses for collimation with the optical cavity shown as two red rectangles (B) plot showing the light intensity using a fibre optic coupled broadband light source and (C) Plot showing the light output for the same model using a high powered LED and collimation without fibre coupling.

^aDepartment of Clinical Biochemistry, James Cook University Hospital, Middlesbrough TS4 3BW, UK

^bInstitute of Cellular Medicine, The Medical School, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK

^cWideblue Ltd, Kelvin Campus, West of Scotland Science Park, Glasgow, G20 0SP