Supporting Information

Label-free electrochemical aptasensor based on the core-shell Cu-MOF@TpBD hybrid nanoarchitecture for the sensitive detection of PDGF-BB

Ya Li,^a Zhiling Liu,^a Wenbo Lu,^a Man Zhao,^a He Xiao,^a Tianjun Hu,^a Jianchun Ma,^a Zhanfeng Zheng,^b Jianfeng Jia^{*a} and Haishun Wu^{*a}

^aKey Laboratory of Magnetic Molecules and Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Linfen 041004, China

^bState Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences

Corresponding authors

*E-mail: jiajf@dns.sxnu.edu.cn

*E-mail: wuhs@sxnu.edu.cn

S1. Experimental section

S1.1. Reagents and Materials

1, 3, 5-triformylphloroglucinol (Tp) and mesitylene and benzidine (BD) were purchased from Energy Chemical (Shanghai, China). Copper (II) nitrate trihydrate $(Cu(NO_3)_2 \cdot 3H_2O)$ and acetic acid and dichloromethane (DCM) were purchased from Hushi Laboratorial Equipment Co. Ltd. (Shanghai, China). Gold chloride tetrahydrate (HAuCl₄·4H₂O, 99.9%), acetone, and 1,4-dioxane were purchased from Sinopharm Chemical Reagent Co.Ltd. (Shanghai, China). Human mucin1 (MUC1) vascular endothelial growth factor (VEGF) and (platelet-derived growth factor-BB) PDGF-BB were purchased from Shanghai North Connaught Biotechnology Co, Ltd. (Shanghai, China). Human serum was provided by Linfen People's Hospital (Shanxi, China). 2-amino terephthalic acid (NH₂-BDC) was provided by Bailingwei Chemical Technology Co. Ltd. (Beijing, China). N, N-dimethylformamide (DMF, \geq 99%) was provided by Aladdin (China). Polyvinylpyrrolidone (PVP, $Mw = 40000 \text{ g} \cdot \text{mol}^{-1}$) was obtained from Stremchemical. Phosphate buffer solution (PBS, 0.1 M, pH 7.4) containing 0.1 M Na₂HPO₄, 0.1 M KH₂PO₄, and 0.1 M KCl was used as a working buffer for the performance examination of the electrodes. The ultra-pure water was used throughout the whole experiment. The sequences of PDGF-BB targeted aptamer is listed as follows: CAGGCTACGGCACGTAGAGCATCACCATGATCCTG.

S1.2. Apparatus

Valuable information about the topographic characteristics of the synthetic nanomaterials was captured with the aid of JEOL JSM-7500F field emission scanning electron microscope (SEM) and JEOL JEM-2100 transmission electron microscope (TEM). The phase structure of the nanomaterials was analyzed using the Rigaku Ultima IV-185 room-temperature X-ray diffractometer (XRD) with filtered Cu Kα radiation. The comparative Fourier transformation infrared spectra (FTIR) were recorded with a Bruker Alpha FTIR spectrometer. The specific surface areas

and pore size distribution of all samples were measured by the method of Brunauer-Emmett-Teller (BET) using a Beishide 3H-2000PS2 instrument at the temperature of liquid nitrogen.

S1.3. Electrochemical detection

The whole electrochemical measurements were conducted at room temperature with a CHI660E electrochemical workstation (Chenhua Instrument Company of Shanghai, China), which equips with a conventional three-electrode configuration consisting of a glassy carbon electrode (GCE, 4 mm in diameter), a saturated calomel electrode (SCE), and a platinum wire. The mixed solution comprising K_3 [Fe(CN)₆]/K₄[Fe(CN)₆] (5 mM) and KCl (0.1 M) was utilized as the electrolyte solution for the cyclic voltammetry (CV) measurement. The sweeping rate of the CV measurements was 50 mV·s⁻¹, which were carried out in the range between -0.2 and 0.6 V (*vs.* SCE). The target of PDGF-BB was examined by the differential pulse voltammetry (DPV) measurements, which were performed in the potential of -0.2–0.3 V (*vs.* SCE) with an amplitude of 50 mV and a pulse width of 0.05 s.

S1.4. Theoretical calculations

To qualitatively understand the weak interactions between the TpBD and aptamer, the model of TpBD-aptamer complex was set up and then further theoretically optimized with xTB program.^{1, 2} The obtained molden file was used for the wavefunction analyses, which were finished by using Multiwfn program.³ The Independent Gradient Model (IGM)⁴ was employed for the visually studying inter-fragment interactions between TpBD and truncated PDGF-BB targeted aptamer. The color-coded isosurface images of IGM were rendered and visualized by the VMD program.⁵

References

 S. Grimme, C. Bannwarth and P. Shushkov, A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parametrized for All spd-Block Elements (Z = 1–86), J. Chem. Theory Comput., 2017, 13, 1989.

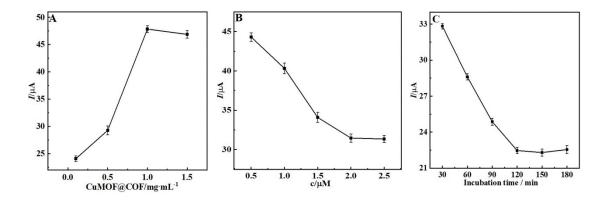
- C. Bannwarth, S. Ehlert and S. Grimme, GFN2-xTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions, J. Chem. Theory Comput., 2019, 15, 1652.
- 3. T. Lu and F. W. Chen, Multiwfn: A Multifunctional Wavefunction Analyzer, *J. Comput. Chem.*, 2012, **33**, 580.
- C. Lefebvre, G. Rubez, H. Khartabil, J.-C. Boisson, J. Contreras-García and E. Hénon, Accurately Extracting the Signature of Intermolecular Interactions Present in the NCI Plot of the Reduced Density Gradient versus Electron Density, *Phys. Chem. Chem. Phys.*, 2017, **19**, 17928.
- 5. W. Humphrey, A. Dalke and K. Schulten, VMD: Visual Molecular Dynamics, *J. Mol. Graphics.*, 1996, **14**, 33.

Method	Detection range	Detection limit	Source
Electrochemical impedance spectroscopy	$0.001-0.05 \text{ ng} \cdot \text{mL}^{-1}$	$0.82 \text{ pg} \cdot \text{mL}^{-1}$	ref. 6
Electrochemical impedance spectroscopy	$0.01{-}100 \text{ ng}{\cdot}\text{mL}^{-1}$	3.7 pg·mL ⁻¹	ref. 7
Differential pulse voltammetry	$0.005 - 1000 \text{ ng} \cdot \text{mL}^{-1}$	$1.6 \text{ pg} \cdot \text{mL}^{-1}$	ref. 8
Biolayer interferometry	$0.5 - 1000 \text{ ng} \cdot \text{mL}^{-1}$	$80 \text{ pg} \cdot \text{mL}^{-1}$	ref. 9
ELISA	$0.00206-1.5 \text{ ng} \cdot \text{mL}^{-1}$	$2.1 \text{ pg} \cdot \text{mL}^{-1}$	abcam
Differential pulse voltammetry	0.0001–0.5 and 0.5–60 ng·mL ⁻¹	0.034 pg·mL ⁻¹	This work

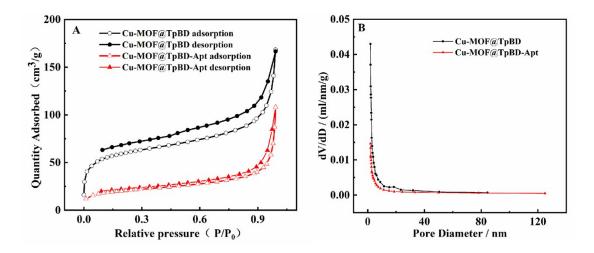
Table S1 Comparison of different approaches in analyzing PDGF-BB.

6. Z. Zhang, C. Guo, S. Zhang, L. He, M. Wang, D. Peng, J. Tian and S. Fang, Carbon-based nanocomposites with aptamer-templated silver nanoclusters for the highly sensitive and selective detection of platelet-derived growth factor, *Biosens. Bioelectron.*, 2017, **89**, 735.

7. L. He, S. Zhang, H. Ji, M. Wang, D. Peng, F. Yan, S. Fang, H. Zhang, C. Jia and Z. Zhang,


Protein-templated cobaltous phosphate nanocomposites for the highly sensitive and selective detection of platelet-derived growth factor-BB, *Biosens. Bioelectron.*, 2016, **79**, 553.

8. W. Song, H. Li, H. Liang, W. Qiang and D. Xu, Disposable Electrochemical Aptasensor Array by Using in Situ DNA Hybridization Inducing Silver Nanoparticles Aggregate for Signal Amplification, *Anal. Chem.*, 2014, **86**, 2775.


 S. Gao, X. Zheng and J. Wu, A biolayer interferometry-based enzyme-linked aptamer sorbent assay for real-time and highly sensitive detection of PDGF-BB, *Biosens. Bioelectron.*, 2018, **102**, 57.

Samples	Added PDGF-BB (ng·mL ⁻¹)	Found PDGF-BB (ng·mL ⁻¹)	Recovery (%)	RSD (%)
1	0.0001	0.000091	91.0	4.3
2	0.5	0.487	97.4	3.8
3	5	5.395	107.9	2.9
4	20	18.62	93.1	3.7
5	40	39.35	98.4	4.5

Table S2 Detection of PDGF-BB added in human serum (n = 6).

Fig. S1 The current responses of (A) DpAu/GCE electrode incubated with different concentrations Cu-MOF@TpBD, (B) Cu-MOF@TpBD/DpAu/GCE electrode incubated with different concentration of aptamers. (C) the amperometric response of aptasensor as the function of the incubation time when immune-reacted with 500 pg·mL⁻¹ PDGF-BB. The standard deviations of the mean are indicated as error bars, with the determination of 4 (n = 4).

Fig. S2 N₂ adsorption-desorption isotherms (A) and the corresponding pore-size distribution curves (B) of the samples Cu-MOF@TpBD and Cu-MOF@TpBD-Apt.