Supporting Information

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Quartz Crystal Microbalance (EQCM)[†] Christian Leppin, ^a Astrid Peschel, ^a Frederick Sebastian Meyer, ^a Arne Langhoff, ^a and Diethelm

Kinetics of Viscoelasticity in the Electric Double Layer Following Steps in the Electrode Potential Studied by a Fast Electrochemical

Christian Leppin, ^a Astrid Peschel, ^a Frederick Sebastian Meyer, ^a Arne Langhoff, ^a and Diethelm Johannsmann ^{a*}

Resonance Curves as Determined with a Multi-Frequency Lockin Amplifier (MLA)

In the main text, it was stated that the multi-frequency lockin amplifier provides resonance curves with a few grid points only. Still, the resonance parameters can be derived from these sparsely populated experimental curves easily and robustly. Fig. S 1 shows examples.

Fig. S 1

Real and imaginary part of the resonance curves. The spacing between the members of the comb was δf_{comb} = 1 kHz, resulting in a time resolution of 1 ms. The lines are fits with a phase-shifted Lorentzian. The phase-shifted Lorentzian is needed because of imperfect calibration.

a Institute of Physical Chemistry, Clausthal University of Technology,

Arnold-Sommerfeld-Str. 4, D-38678 Clausthal-Zellerfeld, Germany. *Author for correspondence, electronic mail: johannsmann@pc.tu-clausthal.de

⁺Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

Electrochemical Impedance Spectroscopy (EIS)

EIS was carried out in parallel to the QCM experiments. The spectra (Fig. S 2) were fitted with a Randles circuit expanded by a constant phase element:

$$Z \approx R_{\text{sol}} + \left(\frac{1}{R_{\text{CT}}} + i\omega^n Q_{\text{CPE}} \exp\left(i\frac{\pi}{2}(n-1)\right)\right)^{-1}$$

$$\approx R_{\text{sol}} + \left(\frac{1}{R_{\text{CT}}} + i\omega C_{\text{DL}}\right)^{-1}$$
Eq. 1

 $R_{\rm sol}$ is the solution resistance, $R_{\rm CT}$ is the charge-transfer resistance, and $C_{\rm DL}$ is the double layer capacitance. The fits improved when the double layer capacitance, $C_{\rm DL}$, was replaced with a constant-phaseelement, CPE. The fits yielded $n \approx 0.85$, where n = 1 corresponds to a conventional double-layer capacitance. The RC-time was calculated as $R_{\rm sol} Q_{\rm CPE} \omega^{n-1}$, evaluated at $\omega = 2\pi \times 1$ kHz.

The charge transfer resistance, R_{CT} , was in the range of hundreds of kilo-ohms, while the solution resistance, R_{sol} , was hundreds of ohms. With R_{CT} replaced by infinity, the impedance, Z, can be approximated as

Fig. S 2

A typical EIS-spectrum in log-log form. The frequency, where Y' takes its maximum, is an inverse relaxation time, governed by the solution resistance, R_{sol} , and the double layer capacitance, C_{DL} . The sample was a 20 mM aqueous LiNO₃ solution.

Journal Name

$$Z \approx R_{sol} + \frac{1}{i\omega C_{DL}} = R_{sol} \left(1 + \frac{1}{i\omega \tau_{RC}}\right)$$
 Eq. 2

The time $\tau_{RC} = R_{sol} Q_{CPE} \omega^{n-1}$ is of the same order of magnitude as the response time found with the voltage-modulation QCM. Charge reversal is mostly driven by a current from the bulk to the double layer (as opposed to a Faraday current).

Dependence of Amplitudes and Response Times on Concentration and Temperature

The concentration dependence of the amplitudes $\langle A/\Delta E \rangle$ in Fig. S 3 is nontrivial. Following Eq. 9 in the main text, the amplitude of the frequency response should be proportional to the charge response (blue stars in Fig. S 3). The charge increases with salt concentration (as expected), while the amplitudes in Δf decrease at high concentration.

Fig. S 4 shows the dependence of the inverse response times of the NH_4NO_3 electrolyte (20 mM) on inverse temperature. The response times show the same trend as the viscosity of water (blue stars, Refs. 1 and 2).

Calculation of the Density C-Coefficients

In the main text, changes in the viscosity-density product in the double layer were related to ion concentration, making use of the viscosity B-coefficients from the Jones-Dole equation³ and parameters called "density C-coefficients", calculated from density increments of salts as tabulated in Ref. 4. An equation analogous to the Jones-Dole equation was formulated, which is

$$\frac{\rho(z)}{\rho_0} \approx 1 + \sum_i C_i c_i(z) \qquad \qquad \text{Eq. 3}$$

This equation assumes additivity. The density shift of salt solutions is assumed to be the sum of contributions from the individual ions. The coefficients C_i were obtained by solving the matrix equation shown in Box 1. The routine np.linalg.lstsq from numpy was used. (A least-square algorithm is needed because the equation system is overdetermined.) Table 1 in the main text lists the density C-coefficients as derived this way. They are similar to the viscosity B-coefficients in magnitude.

Fig. S 3

Dependence of amplitudes (from Δf) and response times on concentration for NH₄NO₃. Blue stars (\Rightarrow) show the charge in the double layer as inferred from EIS. Fractional error of the mean: $\langle A/\Delta E \rangle$: 2.9%; $\langle \tau \rangle$: 3.3%

Fig. S 4

Dependence of the inverse response times on inverse temperature (NH₄NO₃). Blue stars (\Rightarrow) show the viscosity of water following Refs. 1 and 2. Fractional error of the mean: ln(1/ τ): 3.2%

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0	0 0 0 0 0 0 0 0 0	0 0 1 0 0 0 1 0	1 0 0 1 0 0 0	0 1 0 0 1 0	0 0 1 0 0 1	$\begin{pmatrix} C_{\text{Li}^+} \\ C_{\text{Na}^+} \end{pmatrix}$		0.0245 0.0603 0.0441 0.0465 0.0449 0.0836	LiCl LiBr LiNO ₃ NaF NaCl NaBr
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0	0 0 0 0 0 0 0	0 0 1 0 0 0 1	0 0 1 0 0 0	1 0 0 1 0	0 1 0 0 1	$\begin{pmatrix} C_{\text{Li}^{+}} \\ C_{\text{Na}^{+}} \end{pmatrix}$		0.0603 0.0441 0.0465 0.0449 0.0836	LiBr LiNO ₃ NaF NaCl NaBr
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0	0 0 0 0 0 0	0 1 0 0 0 1	0 0 1 0 0	0 0 1 0	1 0 0 1	$\begin{pmatrix} C_{Li^*} \\ C_{Na^*} \end{pmatrix}$		0.0441 0.0465 0.0449 0.0836	LiNO ₃ NaF NaCl NaBr
0 0 0 0 0 0 1 0 1 0 1 0	0 0 0 0 0	1 0 0 1	0 1 0 0	0 0 1 0	0 0 0 1	$\begin{pmatrix} C_{\text{Li}^{+}} \\ C_{\text{Na}^{+}} \end{pmatrix}$		0.0465 0.0449 0.0836	NaF NaCl NaBr
0 0 0 0 1 0 1 0 1 0	0 0 0 0	0 0 0 1	1 0 0 0	0 1 0	0 0 1	$\begin{pmatrix} C_{\mathrm{Li}^{+}} \\ C_{\mathrm{Na}^{+}} \end{pmatrix}$		0.0449 0.0836	NaCl NaBr
0 0 0 0 1 0 1 0 1 0	0 0 0	0 0 1 0	0 0 0	1 0	0 1	$\begin{pmatrix} C_{LI} \\ C_{Na^{\dagger}} \end{pmatrix}$		0.0836	NaBr
0 0 1 0 1 0 1 0	0 0 0	0 1 0	0 0	0	1	C _{Na}			
1 0 1 0 1 0	0 0	1 0	0	~		I Cut		0.0630	NaNO ₃
1 0 1 0	0	0		υ	0			0.0525	KF
1 0	~	•	1	0	0	Cuut	_	0.0497	KCI
	U	0	0	1	0		=	0.0906	KBr
1 0	0	0	0	0	1			0.0655	KNO₃
0 1	0	1	0	0	0			0.1347	CsF
0 1	0	0	1	0	0	$\begin{pmatrix} C_{Br^{-}} \end{pmatrix}$		0.1327	CsCl
0 1	0	0	0	1	0	$\langle C_{NO_3} \rangle$		0.1693	CsBr
0 1	0	0	0	0	1			0.1503	CsNO ₃
0 0	1	1	0	0	0			0.0214	NH ₄ F
0 0	1	0	1	0	0			0.0206	NH ₄ Cl
0 0	1	0	0	1	0			0.0553	NH ₄ Br
0 0	1	0	0	0	1 /			\0.0361	NH ₄ NO ₃ /
	0 1 0 1 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0	0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 1 0 0 1 0	0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Crystallographic Orientation of the Electrode Surface

In order to determine the fraction auf Au(111) exposed to the electrolyte, XRD measurements were performed using an Empyrean diffractometer (Malvern Panalytical, Malvern, United Kingdom) in grazing incidence geometry with Cu-K_{\alpha} radiation (Fig. S 5). The angle between the sample plane and the incident beam was 0.3°. 20 was scanned from 18° to 93° with a rate of 0.03° s⁻¹. The assignment of the peaks followed Ref. 5. The fraction of Au(111) was inferred from the sum of the peak integrals corresponding to Au(111) and (222), normalized to the sum of all peak integrals.⁶ A fraction of 75% Au(111) surface was obtained. The size of the crystallites was determined from the width of peaks and the Scherrer equation to be about 25 nm.

X-ray diffraction pattern from the electrode surface, showing that the electrode mostly exposes the Au(111) surface to the electrolyte. The intensities were normalized on the intensity of the Au(111) peak. Squares are the locations and the intensities of unoriented polycrystalline Au according Ref. 5.

Notes and References

- ¹ https://en.wikipedia.org/wiki/
- Temperature_dependence_of_viscosity, accessed on 15.07.2020 ² Messaadi, A.; Dhouibi, N., Hamda, H.; Belgacem, F.B.M.;
- Abdelkader, Y. H.; Ouerfelli, N.; Hamzaoui, A. H., A New Equation Relationg the Viscosity Arrhenius Temperature and the Activation Energy for Some Newtonian Classical Solvents, Journal of Chemistry, 2015, 163262.
- ³ Jenkins, H. D. B.; Marcus, Y., Viscosity B-coefficients of ions in solution. *Chemical Reviews* **1995**, 95, (8), 2695-2724.
- ⁴ Söhnle, O.; Novotny, P., Densities of aqueous solutions of inorganic substances. In *Physical Sciences Data 22*, Elsevier: Amsterdam, **1985**.
- ⁵ Wyckoff, R.; W. G., (**1963**) Crystal Structures, Interscience Publishers, Volume 1, pages 7-83.
- ⁶ Uosaki, K.; Shen, Y.; Kondo, T., Preparation of a Highly Ordered Au (111) Phase on a Polycrystalline Gold Substrate by Vacuum Deposition and Its Characterization by XRD, GISXRD, STM/AFM, and Electrochemical Measurements. J. Phys. Chem. **1995**, 99, 14117 – 14122.