Isolation of a DNA aptamer to develop the fluorescent aptasensor for pesticide thiamethoxam

Yu Luo^{1, 2}, Ziying Jin^{1, 3}, Jine Wang¹, Pi Ding¹, Renjun Pei^{1,*}

¹ CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China. E-mail: rjpei2011@sinano.ac.cn.

² Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China.

³Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.

Name	Sequence (5' to 3')
ssDNA library	GGAGGCTCTCGGGACGAC-(N)30-
	GTCCCGATGCTGCAATCGTAAGAAT
Bio-capture	GTCGTCCCGAGAGCCATA-biotin
P1	GGAGGCTCTCGGGACGAC
P2	ATTCTTACGATTGCAGCATCGGGAC
Bio-P2	biotin-ATTCTTACGATTGCAGCATCGGGAC

 Table S1 Detailed sequences used in the SELEX procedure.

Rounds	ssDNA (pmol)	Thiamethoxam (µM)	Incubation time (min)	
1	1000	200	10×3	
2	500	200	10×3	
3	500	200	10×3	
4	500	200	10×3	
5	200	200	10×3	
6	200	150	10×3	
7	200	150	10×3	
8	180	150	10×3	
9	180	150	8×3	
10	180	120	8×3	
11	180	120	8×3	
12	180	120	8×3	
13	180	120	8×3	

 Table S2 SELEX round in details.

Method	Material	LOD	Linear range	Reference
Electrochemical method	Nanosilver/SDS	100 nM	0.1-9 µM	[42]
Electrochemical method	Grapheneoxide	8.3 µM	10-200 μM	[43]
Electrochemical method	β-CD-rGO	270 nM	0.5-16 µM	[44]
Electrochemical method	Graphene	40 nM	0.5-20 μM	[45]
Electrochemical method	Co ₃ O ₄ @g-C ₃ N ₄	4.9 nM	0.01-420 µM	[46]
Flourescence sensor	Aptamer (ssDNA)	1.23 nM	0.01-1 µM	Present work

 Table S3 Comparison of analytical parameters to detect thiamethoxam.

Fig. S1 The elution profile by 4% agarose gel electrophoresis for the first (a) round of selection and 13th (b) round of selection. The S bands (S1~S5) stand for the samples eluted by SELEX buffer. The Sar bands (Thi1~Thi3) stand for the samples eluted by thiamethoxam solution.

Fig. S2 Sequences alignment result by Clustalx 1.8.3.

Fig. S3 The secondary structures of Thi13 and FAM-Thi13.

Fig. S4 Fluorescence quenching efficiency of different concentration ratios of quenching strand with FAM-Thi13. The concentration of FAM- Thi13 is 0.1 μ M. DAB represents the quenching strand, and FAM represents FAM-Thi13.

Fig. S5 Fluorescence spectra of FAM-aptamer (FAM-Thi9 (a) and FAM-Thi12 (b)) and FAM-aptamer-quenching strand complexes alone and in the presence of thiamethoxam. The concentration of FAM-aptamer is 0.1 μ M and the ratio of FAM-aptamer and quenching strand is 1:6.

Fig. S6 Raw fluorescence spectra (a) and the fluorescence intensity at λ_{ex} =520 nm (b). The fluorescence intensity of the FAM-aptamer-quenching strand complex after adding various concentrations (0.01-20 μ M) of thiamethoxam, in which the ratio of aptamer to quencher is 1:6 and the concentration of aptamer is 0.1 μ M.

Fig. S7 (a) The original concentration of thiamethoxam in Dushu Lake. (b) The stability of thiamethoxam in binding buffer.

Fig. S8 Fluorescence spectra of the recovery experiment. Sample Thi 0 means to the FAM-aptamer-quenching strand complex without adding thiamethoxam. The concentration of aptamer is $0.1 \mu M$ and ratio of aptamer to quencher is 1:6.

Fig. S9 Fluorescent spectra for the selectivity experiment. The fluorescence intensity of the FAM-aptamer-quenching strand complex after adding thiamethoxam and its analogues, in which the ratio of aptamer to quencher is 1:6 and the concentration of aptamer is 0.1 μ M. The concentration of thiamethoxam is 2 μ M, while that of its analogues are 20 μ M.