
	 1	

Supporting Information for 

Label-free	SERS	detection	of	proteins	based	on	machine	
learning	classification	of	chemo-structural	determinants	
Andrea	 Barucci,#a	 Cristiano	 D’Andrea,#a	 Edoardo	 Farnesi,#a	 Martina	 Banchelli,a	 Chiara	
Amicucci,a	Marella	de	Angelis,a	Byungil	Hwang,b	and	Paolo	Matteini,*a	

aInstitute	of	Applied	Physics	“Nello	Carrara”,	Italian	National	Research	Council,	via	Madonna	del	Piano	
10,	Sesto	Fiorentino,	I-50019,	Italy	
bSchool	of	Integrative	Engineering,	Chung-Ang	University,	Seoul,	06974,	Republic	of	Korea	
#These	Authors	contributed	equally	to	this	work		
*p.matteini@ifac.cnr.it	

 

	

Fig. S1. SERS spectra with standard deviation of BSA, HSA, LYZ, HTF and ATF at 1x10-6 M under a 785 nm 
excitation. SD estimated values are: 18 (BSA), 18 (HSA), 18 (LYZ), 17 (HTF) and 20 (ATF). 
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Fig. S2. Five-fold (cv0-cv4) cross-validated PC1vsPC2 score plots of SERS spectra of proteins. Data points of each 
protein are displayed in red for HSA, in blue for BSA, in green for LYZ, in purple for HTF, in brown for ATF along 
with their confidence ellipses.  
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Fig. S3. Exemplary cross-validated PC1vsPC3 (a,c)) and PC2vsPC3 (b,d) score plots of SERS 
spectra (a,b) and of area intensity values of the Lorentzian curves (c,d) of proteins. Data points 
of each protein are displayed in red for HSA, in blue for BSA, in green for LYZ, in purple for 
HTF, in brown for ATF along with their confidence ellipses. 
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Fig. S4. Example of multipeak fit with Lorentzian curves of a SERS 
spectrum of BSA and according to 19 peaks as listed in Table 2. 

Fig. S5. Five-fold (cv0-cv4) cross-validated PC1vsPC2 score plots of SERS spectra of area intensity values of the 
Lorentzian curves of proteins. Data points of each protein are displayed in red for HSA, in blue for BSA, in green for 
LYZ, in purple for HTF, in brown for ATF along with their confidence ellipses.  
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Fig. S6. Representation of the KM classification of proteins by Silhouette score metric as obtained by considering 
PC1 and PC2. A K clustering number = 3 as preferential output of the algorithm (according to Table 3 with an 
average Silhouette score of 0.474) is displayed in (a) and imaged in the PC2vsPC1 score plot shown in (b). When 
compared with the PCA score plot of Fig. 5(b) we can notice a perfect superposition of the yellow scores with the 
HSA scores. The violet cluster is a merging of transferrin scores while the cyan cluster includes BSA, LYZ and 
part of the ATF scores.  

	

 
Fig. S7. t-SNE score plots as obtained by the application of t-SNE to the area intensity values of the Lorentzian curves 
once tuned the perplexity parameter to 20 (a), which corresponds to the highest level of separation among protein 
clusters, or to 5 (b), 45 (c), 70 (d), 95 (e). Data points of each protein are displayed in red for HSA, in blue for BSA, 
in green for LYZ, in purple for HTF, in brown for ATF along with their confidence ellipses. 
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Fig. S8. Silhouette (a,b) and D-B (c,d) scores (a,c) and relative standard deviation 
values (b,d) visualized as variations in color intensity as a function of clustering number 
K (varying from 2 to 10) and of the perplexity parameter (varying from 5 to 100). The 
highest values of Silhouette and the lowest values of D-B represent the best indexes.  A 
clustering K = 3 appears favored under both Silhouette and D-B whereas K = 5 ranks as 
a second option. 
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Appendix 1 
1. Multipeak fitting  

Raman spectroscopy provides detailed information on chemical structures and molecular 
interactions, exploiting the inelastic scattering effect between the light and the chemical bonds 
of the sample under investigation. A typical Raman spectrum shows a number of peaks in 
which intensity and wavelength position correspond to a specific molecular bond vibration 
(i.e. OH, CH2, etc.) or group of bonds (i.e. Phe ring breathing). The accurate labeling of these 
peaks and the corresponding vibrations provide the chemical fingerprint of the analyte. The 
more complex the molecular structure of the analytes, like proteins in biological applications, 
the more information will be present in the Raman spectra, with peaks mixed to broad bands 
produced by overlapping vibrations related to specific amino acid residues or proteins 
secondary structure (i.e. Amide bands).  
Multipeak fit with Lorentzian or Gaussian (or mixed) curves is a strategy for the analysis of 
Raman spectra and related plasmon-enhanced techniques such as SERS. It permits to 
decompose a complex spectrum in a number of main vibrations, typically found in literature 
(as reported in Table 2). Main data obtained by the fit (area, center, max intensity, width, etc.) 
allow an accurate assignment and weight of the Raman modes, making possible the 
unambiguous identification of the analyte or the molecular characterization (oxidation state, 
folding/unfolding state, etc.). 
Working with a lower number of variables is considered advantageous in data analysis, 
because algorithm performances can be strongly related to the number of inputs and in its 
quality. Moreover, as general rule of thumb it is always a good choice to work with a number 
of variables lower than the number of data. Since a SERS spectrum is composed by a large 
number of data (typically above 1000 points), some of which are just noise or uncorrelated 
with the problem at hand, data analysis can be consequently distorted. Conversely, the use of 
fitted bands as obtained by a multipeak fit prevents the above issue by taking advantage of a 
smaller number of features (typically below 50). 
 

2. Principal Component Analysis (PCA) 

PCA is a fundamental technique in multivariate data analysis, evaluating the correlation 
between variables and their relevance in order to visualize objects (identification of outliers or 
of classes), to synthesize the description of data (noise and spurious information removal), to 
reduce data dimensionality and to investigate their principal properties [1]. Technically, PCA 
is an unsupervised learning method, very similar to clustering, producing a low-dimensional 
representation of the dataset that contains as much as possible of the original variability. This 
low-dimensional representation is obtained by geometrically projecting a high-dimensional 
dataset onto lower dimensions, called principal components (PCs). Aim of the method is to 
find the best data description limiting as much as possible the number of PCs used. Once PCs 
have been computed, their scoreplots are able to create a low-dimensional view of the 
observations, usually more interpretable than the original data while preserving as much 
information as possible. Such PCA scoreplots can be used to find potential clusters. The idea 
is that each of the n observations resides in a p-dimensional space, but not all of these 
dimensions are equally interesting. PCA seeks a small number of dimensions (d < p) that are 
as much informative as possible, where the concept of informative is assessed by the amount 
that the observations vary along each dimension. Each of the dimensions calculated by PCA is 
a linear combination of the p variables:  
 
PCj =a1jx1+a2jx2+...aMjxM  ∀j=1…m 
PC1, …, PCM are ordered so that Var(PC1 )> Var (PC2 )> Var (PCM) 
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The m-PCs preserve all the original data variance, they are independent (without redundancy) 
and orthogonal. 
 

3. Cross validation 

One of the most important aspects in data analysis is reproducibility, i.e. the results should be 
independent from small perturbations of the dataset. In this work we verified that PCA as well 
as machine learning classifiers met this requirement. Accordingly, we implemented a 5-fold 
cross validation on PCA and t-SNE, checking the occurrence of highly reproducible results as 
actually demonstrated in Figs. S2, S5 and S7. Similarly, machine learning algorithms were 
trained and tested using a 5-fold cross-validation.  
 

4. Classification algorithms 

Computational models using data (experience) to improve their performance in terms of 
prediction and/or classification are usually defined as machine learning models/methods [2-4].   
In this work we selected 4 machine learning algorithms for classification of our protein 
samples: linear discriminant analysis (LDA), support vector machines (SVM), K-nearest 
neighbors (KNN) and K-means (KM), using PCA-processed data obtained from SERS spectra 
and from area intensity values of the Lorentzian bands used for fitting the SERS spectra, 
respectively, as input. In order to prevent dependency of the results from a particular choice of 
the dataset, a 5-fold cross-validation was implemented. Moreover, since many algorithms 
depend on hyperparameters, that is parameters to tune in order to obtain the best algorithm 
performance, a grid search in the space of these hyperparamethers was performed.  

4.1 Linear discriminant analysis - LDA 

LDA is a supervised machine learning technique which tries (taking labels into account) to 
project the sample onto a straight line so that the projection points of intraclass samples are as 
close as possible and the projection points of the interclass samples are as far apart as possible.  
In this work, PCA was used to project the entire dataset onto a different feature (sub)space 
followed by LDA aiming at finding the directions that maximize the separation (or 
discrimination) between different protein species.  

4.2 Support vector machines - SVM 

SVM is probably among the most popular and talked about machine learning algorithms. 
Since its introduction in the 1990s, SVM continues to remain the go-to method for high 
performance algorithms and with few tuning parameters. SVM is primarily a classifier method 
that performs classification analysis by constructing hyperplanes in a multidimensional space 
by separating cases of different class labels. SVM supports both regression and classification 
tasks and can handle multiple continuous and categorical variables.  

4.3 K-Nearest Neighbor - KNN 

KNN approach is a non-parametric method, which assumes that “similar data” stay in close 
proximity in a certain space. The KNN algorithm treats the variables as coordinates in a 
multidimensional feature space. In this study we used KNN by setting K to 5 (i.e. as the 
number of proteins considered), looking for the best accuracy. 

4.4 K-means (KM) and unsupervised clustering methods 

Clustering analysis represents a class of unsupervised learning techniques (no samples 
labeling required) for data classification, usually very interesting when dealing with samples 
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composed e.g. of an unknown mixture of elements, that is without prior knowledge. Using 
these methods data elements are partitioned into groups (subsets), each one representing a 
collection of “similar elements” based on a intraclass/interclass distance function (different 
functions can be available). In this work an Euclidean distance function was used, and grid 
search was implemented to determine the optimum number of clustering, while Silhouette and 
Davies-Bouldin scores were used as a metric to measure algorithm performance [5, 6]. 

5. t-SNE 

t-Distributed Stochastic Neighbor Embedding (t-SNE) is an unsupervised, non-linear 
technique originally used for visualizing high-dimensional data and allowing to project higher 
dimensional data in a 2D space without loss of information [7]. In simpler terms, t-SNE 
provides the perception of how data are arranged in a high-dimensional space. t-SNE 
algorithm calculates a similarity estimation between pairs of samples in the high-dimensional 
space and in the low-dimensional space, attempting to optimize these two similarity measures 
using a cost function. t-SNE differs from PCA in preserving only small pairwise distances or 
local similarities. Differently PCA is concerned with maintaining large pairwise distances in 
order to maximize variance. Although both PCA and t-SNE have their own pros and cons, 
some key differences between PCA and t-SNE can be noted as follows: 1) PCA is less 
computationally expensive than t-SNE (in fact t-SNE can take several hours on million-
sample datasets where PCA will finish in seconds or minutes); 2) t-SNE is a probabilistic 
technique, while PCA is a mathematical one. 
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