SUPPLEMENTARY INFORMATION

Fluorescence assay for the determination of glutathione based on novel ring-fused 2-pyridone derivative in dietary supplements

Wiktor Kasprzyk^a*, Filip Koper^a, Agata Flis^c, Dominika Szreder^a, Elżbieta Pamuła^c, Dariusz Bogdał^a, Sławomir Wybraniec^b, Joanna Ortyl^a, Tomasz Świergosz^b*

* Corresponding authors:

e-mail: wiktor.kasprzyk@pk.edu.pl; tomasz.swiergosz@pk.edu.pl

^a Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Kraków, Poland

^b Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Kraków, Poland

^c Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Ave., Kraków, 30-059, Poland

GSH:CA mol/mol	Peak area [mAU]
1:1	2703318
1:2	2490398
1:3	5132029
1:4	5127801
1:5	5632998
1:7,5	4813685
1:10	5148298
1:25	3198677
1:50	2639819

Table S1. Comparison of peak area (2D chromatogram acquired at 350 nm) of the fluorescent fraction with retention time 9,3 minute following a various molar ratio of substrates.

Figure S1. LC-DAD chromatograms of CA:glycine (**A**), CA:glutamic acid (**B**) and CA:L-cysteine (**C**) reaction mixtures.

Figure S2. LC-UV-VIS chromatogram acquired during the preparative separation of CA:GSH reaction mixture – fraction eluted at 7.1 minutes was collected (**A**). LC-DAD chromatogram of purified fluorescent compound (**B**).

Figure S3. ¹H NMR spectrum of the fluorophore.

Figure S6. HSQC ¹³C-¹H spectrum of the fluorophore.

Figure S7. HSQC ¹⁵N-¹H spectrum of the fluorophore.

Figure S8. HMBC ¹⁵N-¹H spectrum of the fluorophore.

Figure S9. UV/VIS absorption spectrum of the aqueous solution of CTPC (0.05 mg/ml).

Figure S10. PL excitation and emission spectra of aqueous solution of CTPC (0.05 mg/ml). For PL excitation spectrum λ_{em} was set to 444 nm, while for PL emission spectrum spectra λ_{ex} was set to 355 nm, slits for both measurements were set to 5 nm both for excitation and emission.

Figure S11. Live-dead (calcein-AM and propidium iodide) staining of L929 cells cultured for 24 h, 3 and 7 days in control medium (0 mg/ml) and medium supplemented with fluorophore at concentration of 0.001, 0.01, 0.05, 0.5 and 1 mg/ml medium, scale bar = 100 μ m; no significant differences between samples on the same day of culture according to ANOVA.

Figure S12. Antioxidative activity of CTPC in comparison to CA, GSH, and AA (**A**) and the photography of samples of DPPH solution treated with CA, GSH, and AA (**B**).

Figure S13. Comparison of PL emission of GSH derivatization reactions at various time intervals (**A**). Photography of the vials and cups used for the GSH derivatization protocol (**B**). Comparison of PL emission of GSH derivatization reactions conducted in open vessels and with controlled-release cups (**C**).

Figure S14. LC-ESI-MS calibration curve for GSH determination.