Supporting Information

Entropy-driven amplification strategy-assisted lateral flow assay

biosensor for ultrasensitive and convenient detection of nucleic

acids

Shasha Li, ^a Hong-Min Meng, ^a* Hong Zong,^b Juan Chen, ^a Jianjun Li, ^a* Lin Zhang^b and Zhaohui Li ^a*

^aCollege of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China ^bDepartment of oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.

Contents

Figures:
Figure S1. The effect of capture-DNA concentration
Figure S2. The effect of reporter-DNA concentration
Figure S3. The effect of running buffer on the target detection
Figure S4. The effect of running time
Figure S5. The effect of the concentration ratio of fuel and SS7
Figure S6. The effect of reaction temperature
Tables :
Table S1. DNA sequences used in the experiment. S9
Table S2. Comparison of the proposed method with previous reported probes
Table S3. The application of LFA biosensor in real human serum
samples.S11
Table S4. Comparison of the proposed detection method for H1N1 RNA with
previous reported probes
Table S5. The application of LFA biosensor in real human serum samples.
Reference

Figures:

Figure S1. The effect of capture-DNA concentration on the response of biosensor for target detection.

Figure S2. The effect of reporter-DNA concentration on the response of biosensor for target detection.

Figure S3. The effect of running buffer on the target detection: (1) 0.5% Tween, (2) 1.0% Tween, (3) 4.0% Tween, (4) 1.0% Tween+0.5% BSA, (5)1.0% Tween+1.0% BSA, (6)1.0% Tween+4.0% BSA, (7) 1.0% Tween+0.5% sucrose, (8) 1.0% Tween+1.0% sucrose, and (9) 1.0% Tween+4.0% sucrose.

Figure S4. The effect of running time on the response of biosensor for target detection.

Figure S5. The effect of the concentration ratio of fuel and S on the performance of biosensor.

Figure S6. The effect of reaction temperature on the performance of biosensor.

Tables :

Table S1. Sequences used in the experiment.

Name	Sequence (5' to 3')
Report	Amino-CCTACGTCTCCAACTAACTTACGG
	Biotin-
Linker	TGGAGACGTAGGGTATTGAATGAGGGCCGTAAGTTAGTTGGA
	GACGTAGG
By product	TTTTTTCCCTCATTCAATACCCTACG
	CCTACGTCTCCAACTAACTTACGGCCCTCATTCAATACCCTAC
Fuel	G
target	CATTCAATACCCTACGTCTCCA
Capture	Biotin-TTTTTTTTTTCCGTAAGTTAGT
m-T	CATTCATTACCCTACGTCTCCA
m-C	CATTCACTACCCTACGTCTCCA
m-G	CATTCAGTACCCTACGTCTCCA
i-T	CATTCATATACCCTACGTCTCCA
i-A	CATTCAAATACCCTACGTCTCCA
i-C	CATTCACATACCCTACGTCTCCA
i-G	CATTCAGATACCCTACGTCTCCA
d-A	CATTCATACCCTACGTCTCCA
T · 1	Biotin-
Linker-	TTGTGACTGGGTGTATATTCTGAGGGCCGTAAGTTAGTTGGA
HINI	GACGTAGG
By	
product-	TTTTTTCCCTCAGAATATACACCCAG
H1N1	
Fuel-	CCTACGTCTCCAACTAACTTACGGCCCTCAGAATATACACCCA

H1N1	G
H1N1-	
DNA	CAUAATATACACCCAUTCACAA
H1N1-M1	CAGAATATACAGCCAGTCACAA
H1N1-M2	CAGAATCTACAGCCAGTCACAA
H1N1-M3	CAGAATCTACAGCCAGACACAA
H3N2	CTTCAAAATACGAAGTGGGAAA
H5N1	TTCAGATCATCCCCAAAAGTTC
H9N2	ATTCTTTCAGGAGAGAGCCACG
H7N9	TGTCACCTCTGACTAAGGGGAT

 Table S2. Comparison of the proposed method with previous reported probes for nucleic acids detection.

Materials	Amplification strategy	LOD	Linear range	Ref.
AuNPs	/	60 pM	0.075-10 nM	1
AuNPs	/	68 pM	0.1-10 nM	2
AuNPs	/	1 nM	1-100 nM	3
AuNPs	aPCR	1 pg mL ⁻¹	1 pg mL ⁻¹ -1 ng mL ⁻¹	4
AuNPs	UP-APCR	0.1 pg mL ⁻¹	0.1-100 pg mL ⁻¹	5
AuNPs	NASBA	0.5 pg mL ⁻¹	0.5-500 pg mL ⁻¹	6
AuNPs	RCA	40 pM	0.02-200 nM	7
AuNPs	HCR	5 pM	/	8
AuNPs	HCR	6.8 pM	0.02-10 nM	9
Fluorescent nanospheres	EDA	1.43 pM (9.44 fg mL ⁻¹)	3-150 pM	This work

aPCR: asymmetric PCR

UP-APCR: universal primer-mediated asymmetric PCR

NASBA: nuclear acid sequence-based amplification

RCA: rolling circle amplification

HCR: hybridization chain reaction

EDA: Entropy-driven amplification

Samples	Spiked (pM)	Found (pM)	Recovery (%)	RSD (%)
1	10.00	9.58	95.80	2.3
2	30.00	30.70	102.3	2.7
3	100.0	98.31	98.31	3.7

Table S3. The application of LFA biosensor in real human serum samples.

Table S4. Comparison of the proposed detection method for H1N1 RNA with previous reported probes.

Detection Method	Amplification strategy	LOD	Linear range	Ref.
Impedimetric	/	577 pM	/	10
Fluorescence	/	0.13 mM	0.2-10 mM	11
Colorimetric	/	10 pM	10 pM-100 nM	12
Fluorescence polarization	/	3.45 nM	10 nM-100 nM	13

Fluorescence	EDA	2.02 pM (13.4 fg mL ⁻¹)	3-150 pM	This work
Colorimetric	RT-PCR	14.1 pg mL ⁻¹	/	15
Current	PCR	20-30 fg mL ⁻¹	/	14

PCR: polymerase chain reaction

RT-PCR: reverse transcription-polymerase chain reaction

Table S5. The application of LFA biosensor in real human serum samples.

Samples	Spiked (pM)	Found (pM)	Recovery (%)	RSD (%)
1	15.00	14.41	96.1	1.9
2	75.00	76.31	101	4.6
3	150.0	143.1	95.4	1.4

Reference

- X. Gao, H. Xu, M. Baloda, A. S. Gurung, L. P. Xu, T. Wang, X. Zhang and G. Liu, *Biosens. Bioelectron.*, 2014, 54, 578–584.
- W. Zheng, L. Yao, J. Teng, C. Yan, P. Qin, G. Liu and W. Chen, Sens. Actuators, B, 2018, 264, 320–326.
- 3 W. A. Henderson, L. Xiang, N. H. Fourie, S. K. Abey, E. G. Ferguson, A. F. Diallo, N. D. Kenea and C. H. Kim, *Anal. Methods*, 2018, **10**, 5358–5363.
- 4 F. Liu, H. Liu, Y. Liao, J. Wei, X. Zhou and D. Xing, *Biosens. Bioelectron.*, 2015, **74**, 778–785.
- 5 F. Zhan, T. Wang, L. Iradukunda and J. Zhan, *Anal. Chim. Acta*, 2018, **1036**, 153–161.
- H. Liu, F. Zhan, F. Liu, M. Zhu, X. Zhou and D. Xing, *Biosens. Bioelectron.*, 2014, 62, 38–46.
- M. Yao, X. Lv, Y. Deng and M. Rasheed, *Anal. Chim. Acta*, 2019, 1055, 115–125.
- 8 H. B. Wang, Z. T. Zhong, T. Zhang and Y. D. Zhao, Sens. Actuators, B, 2020, 310, 127829.
- 9 X. Miao, X. Ning, Z. Li and Z. Cheng, Sci. Rep., 2016, 6, 32358.
- 10 A. Bonanni, M. I. Pividori and M. del Valle, Analyst, 2010, 135, 1765–1772.
- L. Feng, J. Liu, S. C. Zhang and X. R. Zhang, *Anal. Methods*, 2015, 7, 5689– 5694.
- 12 H. Cho, J. Jung and B. H. Chung, Chem. Commun., 2012, 48, 7601–7603.
- 13 J. Zhang, J. Tian, Y. He, S. Chen, Y. Jiang, Y. Zhao and S. Zhao, *Analyst*, 2013, 138, 4722–4727.
- 14 L. T. H. Kao, L. Shankar, T. G. Kang, G. Zhang, G. K. I. Tay, S. R. M. Rafei and C. W. H. Lee, *Biosens. Bioelectron.*, 2011, 26, 2006–2011.
- 15 Y. T. Kim, Y. Chen, J. Y. Choi, W. J. Kim, H. M. Dae, J. Jung and T. S. Seo, *Biosens. Bioelectron.*, 2012, **33**, 88–94.