Supporting information

3D Printed Smart Silk Wearable Sensors

Tianshu Chu^{a,#}, Huili Wang^{b,#}, Yumeng Qiu^a, Haoxi Luo^a, Bingfang He^a, Bin Wu^{c,*} and Bingbing Gao^{a,*}

^a School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.

^b Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.

^c College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing

211816, China.

[#] Tianshu Chu and Huili Wang contributed equally to this work and should be considered as cofirst authors

*E-mail: wubin1977@njtech.edu.cn; gaobb@njtech.edu.cn.

Figure S1: a) Correspondence between stretching ratio and stress before and after healing; b) Correspondence between stretching ratio and resistance; c) Reusable performance of conductive devices

Figure S2: a) Self-healing performance of silk-film device with microchannel inside (original(i), cut(ii) and healing(iii)); b) Stretching demonstration of silk-film device; c) Fluid performance in the channel before and after self-healing; d) Resistance response ability before and after self-healing

Video S1: the preparation process of 3d printing