Supporting Information

Cobalt and nitrogen co-doped mesoporous carbon for electrochemical hydrogen peroxide sensing: effect of graphitization

Bin Yana,b,c, Sasa Gua,b,c*, Yuesong Shena,b,c*

- a. College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, PR China
- b. Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, PR China
- c. Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, PR China

*Corresponding author: Prof. Yuesong Shen; PhD. Sasa Gu

E-mails: sys-njut@163.com (Yuesong Shen): sasa.gu@njtech.edu.cn (Sasa Gu)

Results

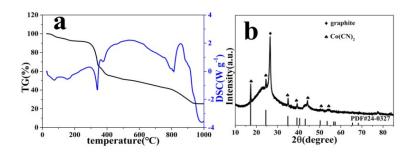
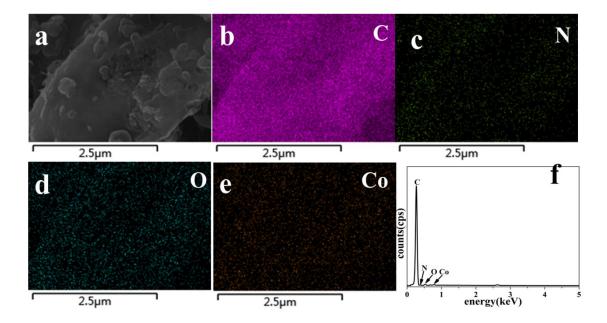



Fig.S1 (a) TGA-DSC curves of sample prepared with EDTA: $Co^{2+}=1:0.4$; (b) XRD patterns of the sample prepared with EDTA: $Co^{2+}=1:0.4$ after acid washing.

 $\label{eq:convergence} Fig.S2 \; FE-SEM \; (a) \; picture \; of \; Co-N/C-950; \; Elemental \; mapping \; images \; of \; C \; (b), \; N \; (c), \; O \; (d), \; Co \; (e) \; and \; EDS \; (f) \\ of \; Co-N/C-950.$

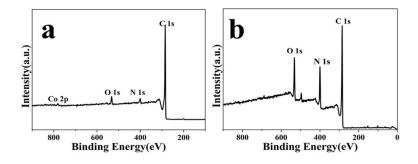


Fig.S3 (a) XPS full-scan spectra of Co-N/C-950; (b) XPS full-scan spectra of N/C; respectively.

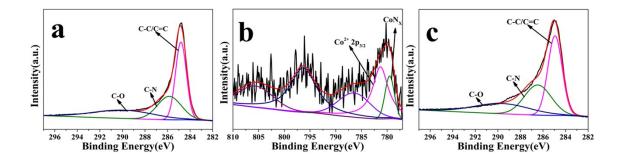


Fig.S4 (a) C 1s XPS spectra, (b) Co 2p XPS spectra of Co-N/C-950, and (c) C 1s XPS spectra of N/C; respectively.

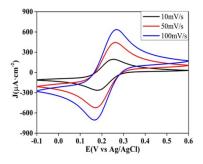


Fig.S5 Cyclic voltammograms of bare electrodes in $3 \text{mM K}_3[\text{Fe}(\text{CN})_6] + 0.1 \text{M KCl}$ solution at different scan rates.

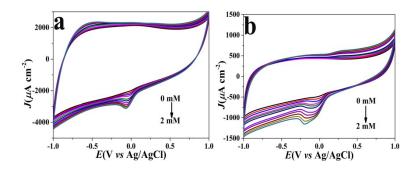


Fig.S6 Cyclic voltammograms (CV) of (a) Co-N/C-750 and (b) Co-N/C-850 on addition of different concentrations of H_2O_2 in N_2 -saturated 0.1mol L^{-1} PBS (pH=7.4), potential scan rate 50mV s⁻¹.

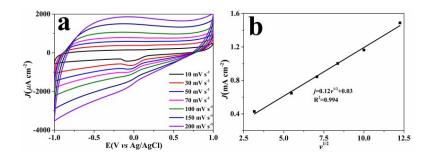


Fig.S7 CV curses (a) of Co-N/C-950 at different scan rates with 1 mM $\rm H_2O_2$; the linear dependence plot of peak currents with scan rate (b).

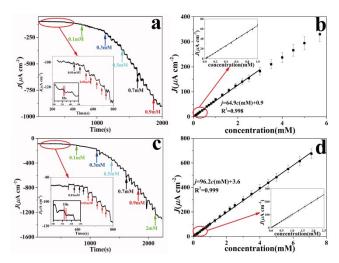


Fig.S8 Amperometric curves of (a) Co-N/C-750, (c) Co-N/C-850 with successive addition of H_2O_2 in N_2 -saturated 0.1mol L^{-1} PBS (pH=7.4) at the applied potential of -0.1V and -0.15V under constant stirring. The inset pictures in (a) and (c) show the magnified cathodic current response to the low concentrations of H_2O_2 . The corresponding calibration curves of (b) Co-N/C-750, (d) Co-N/C-850 toward H_2O_2 detection. The error bars represent the standard deviation of three separate measurements on the electrodes.

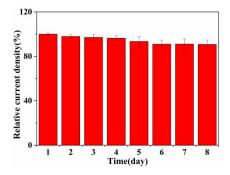


Fig.S9 Long term stability of Co-N/C-950/GCE studied in 1 mM H₂O₂ for 8 days.

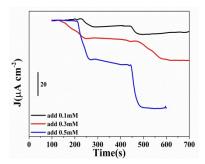


Fig.S10 Co-N/C-950 electrocatalyst for the detection of $\rm H_2O_2$ in fresh water samples with different $\rm H_2O_2$ concentration.

Table S1 ICP-MS data of Co-N/C-x (x=750, 850, 950)

catalysts	Co (wt%)
Co-N/C-750	1.93
Co-N/C-850	1.94
Co-N/C-950	1.44

Table S2 the BET data of Co-N/C-950 and N/C.

catalyst	Surface area (m ² g ⁻¹)	Pore volume (cm ³ g ⁻¹)	Pore diameter (nm)
Co-N/C-950	211.35	0.25	4.47
N/C	463.20	0.45	3.84

Table S3 the element content of Co-N/C-950 and N/C.

catalyst	N (wt.%)	Co (wt.%)	N 1s				
			Pyridinic N	CoN_X	Pyrrolic N	Graphitic N	Oxidized N
Co-N/C-950	6.2	0.4	13.4	5.6	28.3	17.1	35.6
N/C	10.4	-	32.5	-	44.8	9.3	13.4