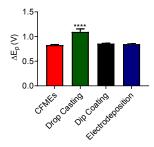
Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2020

Supporting Information for

Optimization of graphene oxide-modified carbon-fiber microelectrode for dopamine detection

Yuanyu Chang and B. Jill Venton*

Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States


email: bjv2n@virginia.edu

phone: 434-243-2132

Supplemental Data

<u>ΔE_p Comparison</u>

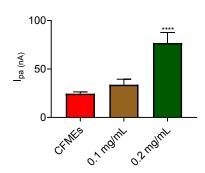

 ΔE_p was measured by calculating the difference of voltage position of oxidation peak and reduction peak in the cyclic voltammogram.

Figure S1. Average ΔE_p by different coating method. (n=4–6, error bars represent SEM, one-way ANOVA with Bonferroni post-test compared to the control (red bars) ****p<0.0001)

Drop Casting Optimization

0.1 mg/mL, 0.2 mg/mL, and 0.3 mg/mL GO solutions were prepared in the same way as mentioned in 2.2. However, 0.3 mg/mL by drop casting overloaded the amplifier of the device detection which could not be used in FSCV test.

Figure S2. Average anodic peak current by drop casting in different concentration. (2 drops, 20 μ L per drop) (n=4–6, error bars represent SEM, one-way ANOVA with Bonferroni post-test compared to the control (red bars) ****p<0.0001)