

Sporting information

for

Construction of a Novel Electrochemical Biosensor Based on Mesoporous Silica/Oriented Graphene Oxide Planar Electrode for Detecting Hydrogen Peroxide

Kun-Chao Lu^a, Ji-Kui Wang^{a*}, Dong-Hai Lin^{b*}, Xue Chen^a, Shi-Yu Yin^a, Guo-Song Chen^a

^a School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210009, China ^bSchool of Environmental and Materials Engineering, College of Engineering, Shanghai Polytechnic University, Shanghai 201209, China.

Email address: wjk@njtech.edu.cn (K. Wang); dhlin@sspu.edu.cn (D. Lin)

Section 1 numerical model:

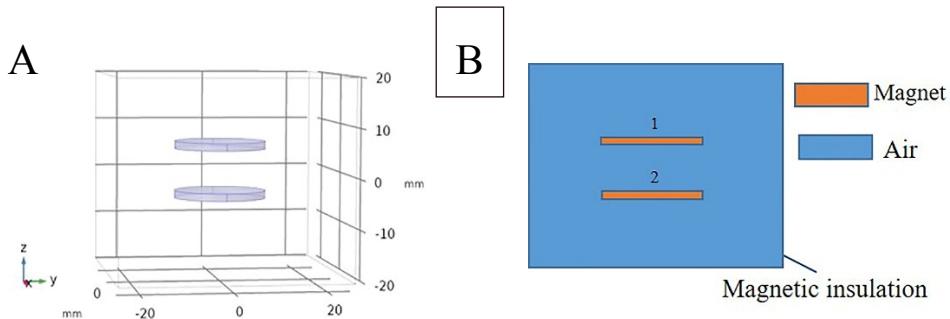
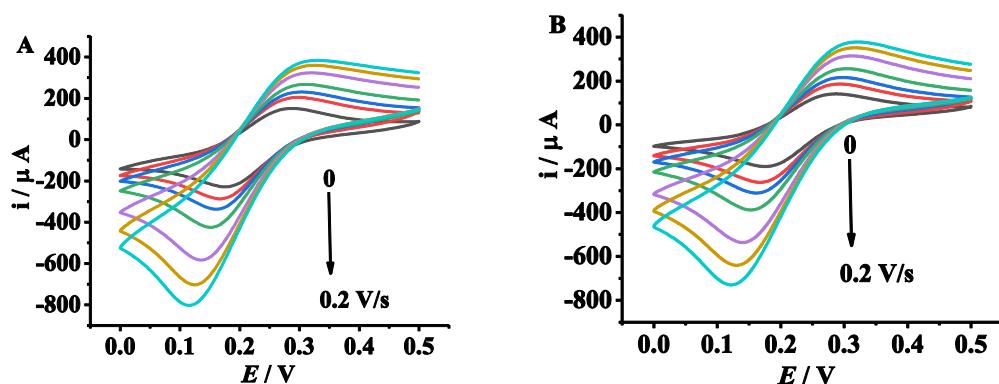



Figure S1 (A) Three-dimensional distribution map in the magnetic field model; (B) a schematic view of the section of the calculation domain (not to scale)

Figure S1A shows three-dimensional distribution map in the magnetic field model. Figure S1B indicates the y,z direction section at x coordinate 0 mm. Air zone width 50 mm, depth 50 mm, height 40 mm; magnet diameter 20 mm, high 1.5 mm. The magnet 1 center is located 5 mm, above the air domain center and the magnet 2 center is 5 mm below the air domain center. The model is AC/DC Module. The outer boundary of the air domain is magnetically insulated and the magnetic flux is conserved; the residual magnetic flux density of the magnet is 1.22 T.

Section 2 Calculation of electrode activation area:

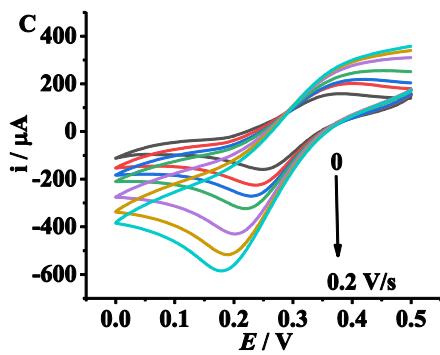


Figure S2 CV curves of (A)CMF/GO/HRP@MS electrode; (B)GO/HRP@MS electrode; and (C)HRP@MS electrode under potassium $[Fe(CN)_6]^{3-/4-}$ system with different scan rate(0.01, 0.02, 0.03, 0.05, 0.10, 0.15 and 0.20 V/s)

Section 3 Electrode performance test:

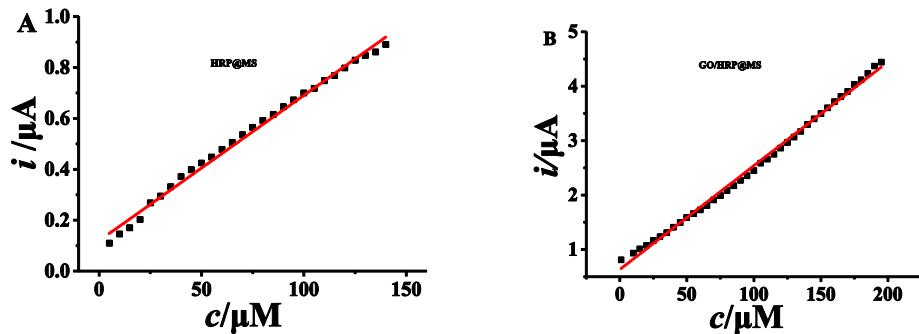


Figure S3 The reduction current curves of (A)HRP@MS electrode; (B) GO/HRP@MS electrode relative to H_2O_2 concentration

Section 4 Electrode detection repeatability and anti-interference ability:

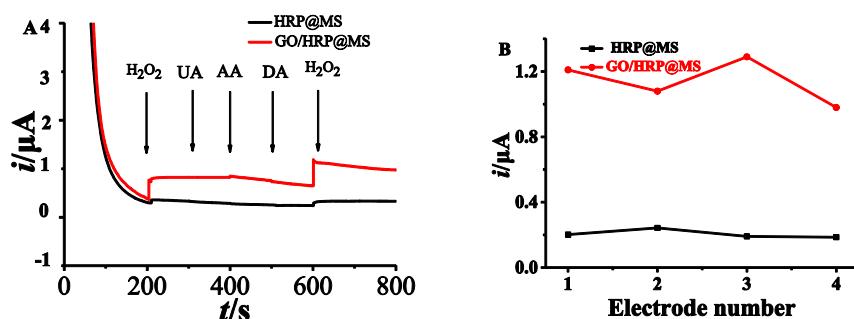


Figure S4 (A)The $i-t$ curves of HRP@MS electrode (the black line) and GO/HRP@MS electrode (the red line) with continuous addition of 20 $\mu M H_2O_2$, UA, AA, DA; (B)the response of each electrode to the four in anaerobic PBS containing 20 $\mu M H_2O_2$

Section 5 Real sample detection:

Table S1. Determination of H₂O₂ in real samples (HRP@MS)

Sample	Addition / μ M	Detection amount / μ M	RSD / %	Detection rate / %
Serum 1	5	3.88	8.55%	77.6%
Serum 2	20	16.34	2.93%	81.7%
Serum 3	100	82.04	6.30%	82.04%

Table S2. Determination of H₂O₂ in real samples (GO/HRP@MS)

Sample	Addition / μ M	Detection amount / μ M	RSD / %	Detection rate / %
Serum 1	5	4.17	4.92%	80.03%
Serum 2	20	18.52	5.27%	92.60%
Serum 3	100	86.88	5.75%	86.88%