Electronic Supporting Material

Lignin-Derived Red-emitting Carbon Dots for Colorimetric and

Sensitive Fluorometric Detection of Water in Organic Solvents

Jun Wang,^a Jianying Wang,^{*} ^a Wenxin Xiao,^a Zhen Geng,^b Di Tan,^c Lai Wei,^a Jinhua

Li,^a Longjian Xue,^c Xianbao Wang* ^a and Jintao Zhu^b

^a Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China

^b Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, P. R. China

^c School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, P. R. China

* Corresponding author: wangjy_2002@163.com; wangxb68@aliyun.com

Fig. S1. XPS spectra of the RCDs

Fig. S2. Excitation-independent PL spectra of RCDs in different organic solvents (a) Ethanol, (b) DMF, (c) DMSO, (d) THF, (e) Ether.

Quantum yield (QY) measurement

The quantum yield (QY) of the RCDs was calculated according to a widely accepted formula,^[1]

 $\varphi_{\rm X} = \varphi_{\rm st} \left(K_{\rm X} / K_{\rm st} \right) \left(\eta_{\rm X} / \eta_{\rm st} \right)^2$

Where φ is the QY, *K* is on behalf of the slope and η is the refractive index. The subscript "x" and "st" reveal sample and standard, respectively.

Refractive index of different solvents

EtOH	Water	DMSO	DMF	THF	Acetone	Ether	Chloroform
1.361	1.333	1.478	1.431	1.407	1.359	1.352	1.446

Table S1. Quantum yields (QY) in various solvents/water under excitation of 365nm and maximum excitation wavelength

	Slope	e _x (10 ⁵)	Slope _{st} (10 ⁵)	QY(%)		Slope _s (10 ⁴)	Slope _r (10 ⁵)	QY(%)
Ethanol	365 nm	0.302	1.12	15.03	Water	365 nm	0.0967	1.12	4.62
	500 nm	0.558	4.37	7.14		480 nm	0.0938	1.49	3.37
DMSO	365 nm	0.635	1.12	37.29	DMF	365 nm	0.319	1.12	17.53
	480 nm	1.53	1.49	67.57		490 nm	0.854	2.69	19.61
THF	365 nm	0.519	1.12	27.65	Acetone	365 nm	0.736	1.12	36.55
	500 nm	0.868	4.37	11.88		480 nm	1.99	1.49	74.46
Ether	365 nm	1.0	1.12	47.31					
	485 nm	2.52	2.02	68.89					

Fig. S3. PL decay spectra of different solvents under excitation of 375 nm, water (a), ethanol (b), DMSO (c), DMF (d), THF (e), acetone (f), ether (g).

) (nm)) (mma)	D ; (0/)	- (n c)	D ; (0/)	- (ng)	– (ng)	··?
	$\lambda_{ex}(nm)$	$\lambda_{em}(\Pi\Pi)$	DI ₁ (70)	$\tau_1(ns)$	$DI_2(70)$	$\tau_2(ns)$	τ _{avg} (ns)	χ-
Ethanol	375	599	85.3	9.777	14.7	2.635	8.721	1.303
Water	375	564	44.4	9.870	55.6	3.586	6.396	1.309
DMSO	375	579	59.7	17.330	40.3	7.590	13.401	1.353
DMF	375	439	79.8	12.999	20.2	4.340	12.325	1.136
THF	375	574	34.3	8.350	65.7	3.748	5.323	1.246
Acetone	375	559	73.4	10.350	26.6	3.938	8.643	1.273
Ether	375	574	37.7	12.450	62.3	5.477	8.099	1.190

Table S2. The fluorescence lifetimes of CDs in different solvents (375 nm excitation)

Fig. S4. Colorimetric detection of water contents in various organic solvents via RCDs.

Fig. S5. Fluorescence spectra of RCDs for sensing water content from 0-100% in various organic solvents, DMF (a), DMSO (d), THF (g); Relationships of relative PL intensity and water content of 10-60% in DMF (b), DMSO (e) and 10-50% in THF (h); Relationships of PL peaks position and water content of 10-90% in DMF (c), DMSO (f), THF (i).

Solvent	Function	R ²	Linear range (%)	LOD (%)
	F ₀ /F=0.0193[H ₂ O]+1.0037	0.983	10 ~ 60	0.360
Ethanol	λ=0.2291[water] + 608.23	0.980	10~90	3.10
	F ₀ /F=0.0268[H ₂ O]+0.9974	0.982	10~60	0.160
DMSO	λ =0.2358[water] + 606.93	0.930	10 ~ 90	1.570
	F ₀ /F=0.0287[H ₂ O]+0.9180	0.976	10~60	0.159
DMF	λ=0.3404[water] + 598.03	0.954	10~90	1.432
	F ₀ /F=0.0245[H ₂ O]+0.9023	0.976	$10 \sim 50$	0.338
THF	λ=0.4032[water] + 589.48	0.980	10~90	2.764
ð.	F ₀ /F=0.0328[H ₂ O]+1.0339	0.971	10~60	0.082
Acetone	λ=0.3667[water] + 593.11	0.992	10~90	0.73
Ether	$F_0/F=0.0284[H_2O]+1.0505$	0.961	0~8	0.122

Table S3. Linear equations, LODs and linear range for water sensing via RCDs

Fig. S6. (a) the fluorescence spectra of RCDs for sensing water content in ether, (b) Relationships of relative PL intensity and water content of 1-8% in ether.

Raw	Detection	Linear	Linear	LOD	Number	Refs
material	method	function	detection		of organic	
			range		solvents	
OPD	Fluorescence	none	50-90 %	0.19 %	5	2
OPD	Fluorescence	none	0-70 %	0.03 %	1	3
Resorcinol	Fluorescence	none	0-1 %	0.006%	5	4
1H-Imidazole-	Fluorescence	none	0-20 %	0.1 %	3	5
carboxylic						
Lignin	Fluorescence	relative	10-90 %	0.082%	6	This work
PPD	and					
	Colorimetric					

Table S4. Summary of water sensing via various methods

References:

- K. Jiang, S. Sun, L. Zhang, Y. Lu, A. Wu, C. Z. Cai and H. W. Lin, *Angew. Chem. Int. Ed.*, 2015, 54, 5360-5363.
- D. Y. Chao, W. L. Yu, Y. B. Liu, L. Zhou, Q. R. Zhang, R. P. Deng and H. J. Zhang, J. Mater. Chem. C, 2018, 6, 7527-7532.
- 3. Q. W. Guan, R. G. Su, M. R. Zhang, R. Zhang, W. J. Li, D. Wang, M. Xu, L. Fei and Q. Xu, *New J. Chem.*, 2019, **43**, 3050-3058
- C. L. Ye, Y. J. Qin, P. C. Huang, A. F. Chen and F. Y. Wu, *Anal. Chim. Acta*, 2018, 1034, 144-152.
- 5. X. D. Wang, D. Wang, Y. L. Guo, C. D. Yang, A. Iqbal, W. S. Liu, W. W. Qin, D. Yan and H. C. Guo, *Dalton Trans.*, 2015, **44**, 5547-5554.