Electronic Supplementary Information

Paper Spray Mass Spectrometry for Discriminating the Quality of Commercial Gasolines

Jia Zhao,[‡] Yajun Zheng,[‡] and Zhiping Zhang*

School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China

*To whom correspondence should be addressed. E-mail: zhangzp0304@gmail.com (Z.Z.)

[‡]These authors contributed equally to this work.

series	observed peaks					
I	m/z	108	122	136		
	composition	$C_7H_{10}N^{+}$	$C_8H_{12}N^{+}$	$C_9H_{14}N^+$		
II	m/z	114	128	142	156	170
	composition	$C_7H_{16}N^+$	$C_8H_{18}N^{+}$	$C_9H_{20}N^+$	$C_{10}H_{22}N^{+}$	$C_{11}H_{24}N^{+}$
III	m/z	202	216	230	244	258
	composition	$C_{14}H_{20}N^{+}$	$C_{15}H_{22}N^{+}$	$C_{16}H_{24}N^{+}$	$C_{17}H_{26}N^+$	$C_{18}H_{28}N^+$
IV	m/z	374	388	402	416	
	composition	$C_{25}H_{46}N_{2}^{+}$	$C_{26}H_{48}N_2^+$	$C_{27}H_{50}N_{2}^{+}$	$C_{28}H_{52}N_{2}^{+}$	

Table S1. Comparison of the compositions of the observed peaks in the analysis of gasoline samples

Figure S1. Effect of spray voltage on the performance of gasoline analysis: (a) 2.5 kV; (b) 2.8 kV, (c) 3.0 kV, (d) 3.2 kV, and (e) 3.5 kV (Note: applied voltage: 3.5 kV; sample volume: 25 μ L; percentage of gasoline in methanol: 70%).

Figure S2. MS/MS mass spectra of the peaks occurred at (a) m/z 108, (b) m/z 122, and (c) m/z 136 (Note: The proportion of gasoline sample in different solvents was 40% (v/v), and 25 μ L of spray solution and 3.5 kV DC voltage were applied for each analysis).

Figure S3. (a) Mass spectrum of m/z 122.0964 using a high-resolution Orbitrap mass spectrometer, and (b) theoretical mass spectrum of the product with a composition of $C_8H_{12}N^+$ from the Thermal Xcalibur software; (c) MS/MS spectra of the species occurred at m/z 122 (Note: The proportion of gasoline sample in different solvents was 40% (v/v), and 25 µL of spray solution and 3.5 kV DC voltage were applied for each analysis).

Figure S4. MS/MS mass spectra of the peaks occurred at (a) m/z 114, (b) m/z 128, (c) m/z 142, (d) m/z 156, and (e) m/z 170 (Note: The proportion of gasoline sample in different solvents was 40% (v/v), and 25 μ L of spray solution and 3.5 kV DC voltage were applied for each analysis).

Figure S5. MS/MS mass spectra of the peaks occurred at (a) m/z 202, (b) m/z 216, (c) m/z 230, (d) m/z 244, and (e) m/z 258 (Note: The proportion of gasoline sample in different solvents was 40% (v/v), and 25 μ L of spray solution and 3.5 kV DC voltage were applied for each analysis).

Figure S6. MS/MS mass spectra of the peaks occurred at (a) m/z 374, (b) m/z 388, (c) m/z 402, and (d) 416 (Note: The proportion of gasoline sample in different solvents was 40% (v/v), and 25 μ L of spray solution and 3.5 kV DC voltage were applied for each analysis).

Figure S7. Comparison of PCA analysis with t-SNE analysis in distinguishing different types of standard gasoline samples: (a) PCA analysis, and (b) t-SNE analysis. [Note: Different types of standard gasoline samples were collected from PetroChina Changqing Petrochemical Company (Xianyang, China)].

Figure S8. Typical mass spectra of the 92# gasoline samples from different gas stations of company D: (a) D92-S1, (b) D92-S2, (c) D92-S3, (d) D92-S4, (e) D92-S5, and (f) D92-S6 (Note: The proportion of gasoline sample in methanol solution was 70% (v/v), and 25 μ L of spray solution and 3.5 kV DC voltage were applied for each analysis. Different series of peaks were marked with various colors, namely series I with red color, •, series II with blue color, •, series III with magenta color, •, the peak at m/z 221 with olive color, •, and the background peaks with black color, •).

Figure S9. MS/MS mass spectrum of the peak occurred at m/z 221 (Note: The proportion of gasoline sample in different solvents was 70% (v/v), and 25 μ L of spray solution and 3.5 kV DC voltage were applied for each analysis).

Figure S10. Mass spectrum of diesel solution by mixing diesel with methanol with a ratio of 7:3 (v/v) (Note: 25 μ L of spray solution and 3.5 kV DC voltage were applied for each analysis).