Supporting Information

for

Determination of Polychlorinated Biphenyls and Organochlorine Pesticides in Chinese mitten Crab (Eriocheir sinensis) using modified QuEChERS followed by GC–MS

Ting Liu, Jianguang Zhou, Li He, Jinhua Gan*

Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China

* Corresponding author: Jinhua Gan. Tel: +86-10-81780165; E-mail: gjh@yfi.ac.cn

The Supporting Information includes following items:

Page S3	Table S1. The information of collected Chinese mitten crabs.
Page S4	Table S2. Target compounds, retention time and and selected SIM ions for the analysis of
	pollutants residues by mass spectrometry.
Page S5	Table S3. Average recovery and relative standard deviation (RSD) of 8 PCBs and 10 OCPs spiked
	in white meat of mitten crabs at three different concentrations by GC-MS analysis.
Page S6	Table S4. Average recovery and relative standard deviation (RSD) of 8 PCBs and 10 OCPs spiked
	in brown meat of mitten crabs at three different concentrations by GC-MS analysis.
Page S7	Table S5. Comparison of the analytical features of the method proposed with other previously
	reported studies.

Number	Average weight	Location	
01	2.8 kg	29°59′41″N, 116°40′3″E	
02	2.5 kg	29°59′19″N, 116°39′47″E	
03	2.4 kg	29°16′35″N, 116°12′38″E	
04	2.6 kg	29°43′35″N, 116°18′26″E	
05	2.7 kg	29°35′13″N, 116°20′40″E	
06	2.9 kg	29°42′59″N, 115°48′2″E	
07	2.9 kg	29°46′49″N, 115°39′28″E	
08	2.4 kg	29°2′22″N, 115°49′13″E	
09	2.8 kg	29°3′13″N, 115°51′31″E	
10	3.0 kg	29°15′1″N, 115°49′27″E	
11	2.5 kg	29°59′26″N, 116°43′7″E	
12	2.7 kg	29°59′7″N, 116°44′1″E	

Table S1. The information of collected Chinese mitten crabs.

Compounds	Retention Time (min)	SIM ions
α-HCH	8.78	218.9/180.9
β-ΗCΗ	9.46	218.9/182.9
ү-НСН	9.57	218.9/180.9
δ-НСН	10.28	218.9/180.9
<i>p,p</i> '-DDT	18.40	234.9
<i>o,p</i> ' - DDT	17.23	236.9
<i>p,p</i> '-DDD	17.15	234.9
<i>o,p</i> ' - DDD	16.01	236.9
<i>p,p</i> '-DDE	15.73	245.9
<i>o,p</i> '-DDE	14.70	317.8
PCB 28	11.09	255.9/185.9
PCB 52	12.08	291.8/219.9
PCB 101	14.80	325.8
PCB 118	16.86	325.7/183.9
PCB 153	17.61	359.7/289.8
PCB 138	18.55	359.7/289.8
PCB 180	20.60	393.7/323.7
PCB 198	21.33	429.6/357.7

Table S2. Target compounds, retention time and and selected SIM ions for the analysis of pollutants residues by mass spectrometry.

	10 μg kg ⁻¹ spike level		20 µg kg ⁻¹ spike level		50 µg kg ⁻¹ spike level	
Compounds	Recovery	RSD	Recovery	RSD	Recovery	RSD
	(%)	(%)	(%)	(%)	(%)	(%)
α-HCH	108.9	14.3	107.6	12.4	114.7	12.2
β-НСН	112.2	1.9	119.9	4.3	104.3	4.6
ү-НСН	103.7	10.3	104.1	14.4	108.1	10.4
δ-НСН	105.8	4.6	100.8	2.7	107.5	2.8
<i>p,p</i> '-DDT	110.1	1.6	106.7	1.9	109.2	4.4
<i>o,p</i> '-DDT	115.3	3.7	103.7	1.3	110.8	6.7
<i>p,p</i> '-DDD	111.4	8.8	110.4	11.9	114.9	11.2
<i>o,p</i> '-DDD	93.5	12.4	98.4	11.6	96.2	7.4
<i>p,p</i> '-DDE	80.2	12.8	89.2	10.4	95.3	9.3
<i>o,p</i> ' - DDE	107.4	3.2	91.7	9.2	101.4	10.6
PCB 28	100.9	2.1	102.6	0.2	99.2	0.1
PCB 52	102.8	4.9	108.7	5.4	100.6	4.3
PCB 101	111.6	3.3	119.7	0.6	113.4	0.9
PCB 118	107.7	6.4	109.5	2.6	101.5	4.8
PCB 153	105.9	5.7	105.4	7.7	102.6	11.5
PCB 138	107.6	8.2	106.2	6.3	105.3	9.5
PCB 180	99.8	7.9	101.6	2.0	100.2	6.9
PCB 198	116.3	12.1	118.6	11.3	114.5	6.8

Table S3. Average recovery and relative standard deviation (RSD) of 8 PCBs and 10 OCPs spiked in white meat of mitten crabs at three different concentrations by GC–MS analysis (n = 6).

	10 μg kg ⁻¹ spike level		$20 \ \mu g \ kg^{-1}$ spike level		50 μg kg ⁻¹ s	50 µg kg ⁻¹ spike level	
Compounds	Recovery	RSD	Recovery	RSD	Recovery	RSD	
	(%)	(%)	(%)	(%)	(%)	(%)	
α-HCH	110.2	11.2	102.7	8.9	105.1	1.6	
β-НСН	99.6	4.2	108.2	7.4	110.5	3.4	
ү-НСН	102.3	6.6	97.3	3.5	113.2	2.9	
δ-НСН	96.7	7.7	105.9	9.1	100.3	5.7	
<i>p,p</i> ' - DDT	100.3	8.2	111.6	2.9	104.8	3.6	
<i>o,p</i> ' - DDT	104.2	4.0	102.3	2.6	100.9	5.5	
<i>p,p</i> '-DDD	110.4	7.2	114.8	3.9	101.1	6.6	
<i>o,p</i> '-DDD	99.2	11.7	103.8	8.7	92.9	5.8	
<i>p,p</i> '-DDE	89.3	4.5	94.2	6.8	87.3	7.4	
<i>o,p</i> '-DDE	102.9	5.6	109.0	3.7	99.3	5.2	
PCB 28	108.1	10.7	102.1	9.5	109.2	3.8	
PCB 52	117.3	8.4	112.5	8.9	110.5	6.6	
PCB 101	101.8	5.3	103.2	7.7	89.3	9.4	
PCB 118	114.6	5.5	111.5	8.6	119.2	3.7	
PCB 153	93.6	1.7	99.7	3.2	106.8	1.9	
PCB 138	98.9	1.9	106.2	1.2	101.6	3.6	
PCB 180	99.3	7.4	108.3	5.8	92.1	6.9	
PCB 198	102.8	2.2	115.2	6.8	104.3	3.6	

Table S4. Average recovery and relative standard deviation (RSD) of 8 PCBs and 10 OCPs spiked in brown meat of mitten crabs at three different concentrations by GC–MS analysis (n = 6).

Analytes	Matrix	Extaction time	Extraction solvent	Solvent comsuption	LOD (µg kg ⁻¹)	LOQ (µg kg ⁻¹)	Ref.
DCD-	Chinese	Not montion of	Hexane-acetone	20 mL	0.003-0.03	0.01-0.1	Ron L.A.P.
PCBs	mitten crabs	Not mentioned	(1:1)				Hoogenboom ¹
pharmaceutical	Creha	15	MeCN	10 mL	3.3-15	10-50	Cong Kong ²
and other residues	Crabs	15 min					
DDTs and PCBs	Water	5 h	n-Hexane	40 mL	1	3.3	A. Aguilar ³
			Hexane-	80 mL	0.01	0.03	Jing Chen ⁴
OCPs	Shrimps	>24 h	dichloromethane				
			mixture (1:1v/v)				
OCDa DCDa and			n-hexane-	100 mL	0.03-0.33	0.1-1.1	Marta
	Crabs	8 h	dichloromethane				Commendatorea ⁵
PDDES			(1:1)				
OCDs DCDs and			hexane/acetone,	20 mL	0.003-2.8	0.01-9.6	Fida Ben Salem ⁶
	Sediment	20 min	dichloromethane/				
r Ans			acetone				
DCDs and DAUs	Blue crabs	36 h	acetone and n-	300 mL	0.02	0.07	Mansoreh
PCDS and PARS			hexane (1:1, V/V)				Ghaeni ⁷
DCD	catfish	30 min.	Water and	35 mL	0.3	1	Narong
PCDS			acetonitrile				Chamkasem ⁸
DCDa and	Chinasa		dichloromethane	100 mL	0.08-0.8	0.3-2.5	Ying Han ⁹
PCDs allu	mittan araba	Not mentioned	and				
PCDD/FS	mitten crabs		hexane (1:1, v:v)				
OCPs and PCBs	Chinese	15 min	MeCN	15 mL	0.03-1.08	0.1-3.6	The proposed
	mitten crabs	1.5 11111					method

Table S5. Comparison of the analytical features of the method proposed with other previously reported studies.

Refernces:

Hoogenboom, R. L.; Kotterman, M. J.; Hoek-van Nieuwenhuizen, M.; van der Lee, M. K.; Mennes, W. C.; Jeurissen, S. M.; van Leeuwen, S. P., Dioxins, PCBs and heavy metals in Chinese mitten crabs from Dutch rivers and lakes. *Chemosphere* 2015, *123*, 1-8.

2. Kong, C.; Wang, Y.; Huang, Y.; Yu, H., Multiclass screening of >200 pharmaceutical and other residues in aquatic foods by ultrahigh-performance liquid chromatography-quadrupole-Orbitrap mass spectrometry. *Anal Bioanal Chem* **2018**, *410* (22), 5545-5553.

3. Aguilar, A.; Borrell, A., DDT and PCB reduction in the western Mediterranean from 1987 to 2002, as shown by levels in striped dolphins (Stenella coeruleoalba). *Mar Environ Res* **2005**, *59* (4), 391-404.

4. Chen, J.; Chen, L.; Liu, D.; Zhang, G., Organochlorine pesticide contamination in marine organisms of Yantai coast, northern Yellow Sea of China. *Environ Monit Assess* **2014**, *186* (3), 1561-8.

5. Commendatore, M.; Yorio, P.; Scenna, L.; Ondarza, P. M.; Suarez, N.; Marinao, C.; Miglioranza, K.S.B., Persistent organic pollutants in sediments, intertidal crabs, and the threatened Olrog's gull in a northern Patagonia salt marsh, Argentina. *Mar Pollut Bull* **2018**, *136*, 533-546.

6. Ben Salem, F.; Ben Said, O.; Duran, R.; Monperrus, M., Validation of an Adapted QuEChERS Method for the Simultaneous Analysis of Polycyclic Aromatic Hydrocarbons, Polychlorinated Biphenyls and Organochlorine Pesticides in Sediment by Gas Chromatography–Mass Spectrometry. *Bulletin of Environmental Contamination and Toxicology* **2016**, *96* (5), 678-684.

7. Ghaeni, M.; Pour, N.A.; Hosseini, M., Bioaccumulation of polychlorinated biphenyl (PCB), polycyclic aromatic hydrocarbon (PAH), mercury, methyl mercury, and arsenic in blue crabPortunus segnisfrom Persian Gulf. *Environmental Monitoring & Assessment* **2015**, *187* (5), 253.

8. Chamkasem, N.; Lee, S.; Harmon, T., Analysis of 19 PCB congeners in catfish tissue using a modified QuEChERS method with GC-MS/MS. *Food Chem* **2016**, *192*, 900-6.

9. Han, Y.; Liu, W.; Zhu, W.; Rao, K.; Xiao, K.; Gao, L.; Su, G.; Liu, G., Sources of polychlorinated dibenzo-p-dioxins and dibenzofurans, and biphenyls in Chinese mitten crabs. *Chemosphere* **2018**, *196*, 522-530.