Supporting Information

For

Facile Dispersive Solid-phase Extraction Based on Humic Acid for the

Determination of Aflatoxins in Various Edible Oils

Ping Liu^{2, †}, Yan-Hua Liao^{1, †}, Hao-Bo Zheng^{3, 4, †}, Yang Tang^{1, *}

¹ Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning, Guangxi 530028, China

² School of Pharmaceutical Science, Guangxi Medical University, Nanning, Guangxi 530021, China

³ State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, China

⁴ School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China

[†] These authors contributed equally to this work

* To whom correspondence should be addressed. Tel.:+86-771-2518650; fax: +86-771-2518638. E-mail address: tycarson2@163.com

The Supporting Information includes following items:

Page 2	Table S1. The investigated hu	umic acids and their vields via treatment
8		····· · · · · · · · · · · · · · · · ·

- Page 3 Table S2. Recoveries of four AFs in various edible oil matrices via HA-DSPE clean-up
- Page 4 Table S3. Recoveries of four AFs via DSPE using six treated HAs as the sorbent
- Page 5 Table S4. Matrix effect for AFs in various edible oil matrices via HA-DSPE clean-up
- Page 6 Table S5. Comparison of clean-up methods between IAC and HA-DSPE on recovery and matrix effect
- Page 7 Figure S1. Representative LC-FLD chromatograms of ten types of AF standards-spiked edible oils after HA-DSPE clean-up. The spiked concentrations were 20 μg/kg for AFB1 and AFG1, and 5 μg/kg for AFB2 and AFG2.

Humic acid	Manufactory	Location	Yield%
HA1	Nanjing Chemical Reagent Co., Ltd	Nanjing, China	63.1
HA2	Guangfu Fine Chemical Research Institute	Tianjin, China	58.0
HA3	Yuanye Biotechnology Co., Ltd	Shanghai, China	68.0
HA4	J&K Scientific Co., Ltd	Beijing, China	61.2
HA5	Alfa Aesar Co., Ltd	Ward Hill, MA, USA	71.5
HA6	Sigma-Aldrich Co., Ltd	Beijing, China	64.0
HA7	Aladdin Co., Ltd	Shanghai, China	n/a
HA8	Adamas-beta Co., Ltd	Shanghai, China	n/a
HA9	Macklin Co., Ltd	Shanghai, China	n/a
HA10	Cool Chemistry Co., Ltd	Beijing, China	n/a
HA11	Bomei Biotechnology Co., Ltd	Hefei, China	n/a
HA12	Meilun Biotechnology Co., Ltd	Dalian, China	n/a

Table S1. The investigated humic acids and their yields via treatment

	Recovery% (n=3)							
Edible oil	AFB ₁		AFB_2		AFG ₁		AFG ₂	
	Mean	RSD%	Mean	RSD%	Mean	RSD%	Mean	RSD%
Blended oil	87.5	3.2	89.6	1.3	92.0	0.3	91.8	1.0
Mixed olive oil	87.1	0.1	89.2	0.0	91.4	0.0	92.6	0.4
Tea oil	81.3	2.1	83.4	0.9	87.0	0.6	86.3	0.6
Sunflower seed oil	84.7	1.3	86.7	1.8	88.6	1.0	90.8	1.4
Rapeseed oil	84.0	4.0	82.1	1.8	88.3	0.3	85.1	0.8
Sesame oil	85.7	5.0	83.8	2.9	98.0	3.1	93.7	4.1
Soybean oil	94.6	0.8	95.6	0.7	104.8	0.2	102.3	0.1
Rice oil	88.9	0.5	86.2	0.1	94.0	2.9	91.0	0.1
Corn oil	97.0	1.5	94.6	0.9	106.2	1.0	102.6	1.7
Peanut oil	87.5	0.2	83.3	1.6	91.1	1.0	87.6	0.5

Table S2. Recoveries of four AFs in various edible oil matrices via HA-DSPE clean-up ^a

 a Each AF was spiked into ten blank oils at 20.0 $\mu g/kg.$

	Recovery% (n=3)								
Humic acid	Al	FB_1	AFB ₂		AFG_1		AFG ₂		
	Mean	RSD%	Mean	RSD%	Mean	RSD%	Mean	RSD%	
HA1	95.9	2.0	103.0	2.1	81.5	0.2	84.1	1.1	
HA2	87.5	3.2	89.6	1.3	92.0	0.3	91.8	1.0	
HA3	82.7	1.2	84.1	3.0	82.9	1.1	85.6	2.5	
HA4	95.2	1.9	94.7	0.8	93.7	0.5	84.5	0.7	
HA5	100.1	0.9	96.4	0.2	93.8	0.2	87.9	0.3	
HA6	94.4	1.3	90.6	1.0	89.0	0.6	90.6	0.7	

Table S3. Recoveries of four AFs via DSPE using six treated HAs as the sorbent ^a

 $^{\rm a}$ Each AF was spiked into a blank blended oil at 20.0 $\mu g/kg.$

	Matrix effect% (n=3)							
Edible oil	AFB ₁		AFB ₂		AFG ₁		AFG ₂	
	Mean	RSD%	Mean	RSD%	Mean	RSD%	Mean	RSD%
Blended oil	109.4	1.6	92.0	0.7	93.8	6.9	93.7	10.0
Mixed olive oil	106.2	0.5	96.8	7.4	101.7	10.1	112.9	1.2
Tea oil	105.9	0.3	92.5	0.1	107.6	2.0	100.9	10.5
Sunflower seed oil	99.2	1.8	100.9	9.7	105.3	9.5	110.9	3.1
Rapeseed oil	105.6	2.3	101.4	2.4	104.3	9.4	108.1	2.4
Sesame oil	101.4	2.4	93.1	0.5	105.6	2.0	93.8	1.1
Soybean oil	93.6	0.4	97.5	0.9	107.6	2.0	96.2	9.8
Rice oil	104.4	6.1	106.8	8.6	98.7	2.1	103.3	7.8
Corn oil	94.2	0.6	90.3	3.7	101.2	4.4	99.1	7.6
Peanut oil	97.9	7.3	89.3	10.4	93.2	2.8	98.6	9.6

Table S4. Matrix effect for AFs in various edible oil matrices via HA-DSPE clean-up ^a

^a Each AF was spiked into ten blank oils at 5.00 μ g/kg. The samples were subjected to LC-MS/MS analysis and the matrix effects were calculated by the following equation: matrix effect (%) = mean peak area of standard in blank oil matrix/mean peak area of standard in blank solvent ×100.

Table S5. Comparison of clean-up methods between IAC and HA-DSPE on recovery and matrix effect ^a

Analyte	Recover	y% (n=3)	Matrix effect% (n=3)		
	IAC	HA-DSPE	IAC	HA-DSPE	
AFB ₁	89.0 ± 2.4	87.5 ± 3.2	99.4 ± 9.9	109.4 ± 1.8	
AFB ₂	84.3 ± 4.6	89.6 ± 1.3	103.4 ± 3.4	92.0 ± 0.6	
AFG ₁	86.5 ± 6.0	92.0 ± 0.3	103.9 ± 2.3	93.8 ± 6.5	
AFG ₂	94.4 ± 4.9	91.8 ± 1.0	91.8 ± 7.4	93.7 ± 9.4	

 $^{\rm a}$ Each AFs was spiked into a blank blended oil at 20.0 $\mu g/kg.$

Figure S1