Portable and benchtop Raman spectrometers coupled to cluster analysis to identify quinine sulfate polymorphs in solid dosage forms and antimalarial drug quantification in solution by AuNPs-SERS with MCR-ALS

Supplementary material

Sarmento J. Mazivila ^{*a*,*}, Helena I.S. Nogueira ^{*b*}, Ricardo N.M.J. Páscoa ^{*c*}, David S.M. Ribeiro ^{*c*}, João L.M. Santos ^{*c*}, João M.M. Leitão ^{*d*}, Joaquim C.G. Esteves da Silva ^{*a*,*}

^a Research Centre in Chemistry (CIQ-UP), Faculty of Sciences, University of Porto,
4169-007 Porto, Portugal.

^b Department of Chemistry and CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.

^c LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.

^{*d*} Research Centre in Chemistry (CIQ-UP), Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.

***Corresponding authors at**: Centro de Investigação em Química da Universidade do Porto (CIQ-UP), Faculty of Sciences, University of Porto. R. Campo Alegre 687, 4169-007 Porto, Portugal. *E-mail addresses*: mazivilasarmentojunior@yahoo.com.br, sarmento.mazivila@fc.up.pt (S.J. Mazivila), jcsilva@fc.up.pt (J.C.G. Esteves da Silva).

Fig. S1. Raman spectra of 80 commercial quinine sulfate solid dosage forms collected by a portable backscattering Raman spectrometer with excitation laser of 785 nm.

 Table S1. MCR-ALS model with concentration correlation constraint on component 2 (quinine sulfate).

Known concentration (C_known) for component 2 in the system (quinine sulfate) used during the concentration correlation constraint on concentration direction, because the first three samples are related to calibration set while sample number four is related to a test sample:

Nan 150.00

Nan 175.00

Nan 200.00

Nan Nan

After the alternating least-squares (ALS) optimization achieves convergence, under application of the various restrictions, the MCR-ALS model reports (output) the concentration and spectra profile as 'copt' and 'sopt', respectively. NaN (Not-a-Number) is the Matlab notation for missing values.

Then, in order to assessment the prediction capacity of the model the authors employed the following commands in Matlab:

%Analytical Chemistry
Figure
plot(C_know_2(1:3,2),copt(1:3,2),'-o')
slope=pinv(C_know_2(1:3,2))*copt(1:3,2)
ypred=copt(4,2)/slope
xc=C_know_2(1:3,2);
yc=copt(1:3,2);
CC=corrcoef([xc yc]),R2=CC(1,2)
load C_test_1.txt%containing nominal concentration for test sample
number 1 as: 180.00 ng mL⁻¹
ytest=C test 1