Electronic Supplementary Information (ESI)

Flexible porous silica aerogel decorated with silver nanoparticles as an effective SERS substrate for label-free trace explosives detection

Wei Liu,a,b Zihao Song,a Yifan Zhao,a Yu Liu,b,c Xuan He,b,c* & Sheng Cui a,c*

a College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China;
b Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China;
c Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 211800, China.
Figure S1 SEM of SiO₂-Ag hybrids at sputtering durations of 90 s (a, b, c), 180 s (d, e, f), 270 s (g, h, i), 360 s (j, k, l), 450 s (m, n, o), 540 s (p, q, r).
Figure. S2 High-resolution TEM image of as-prepared SiO$_2$-Ag hybrids

XRD experiments

Figure. S3 XRD patterns of SiO$_2$ aerogel (the red line) and SiO$_2$-Ag hybrids (the black line).

Optical absorption spectrum

Figure. S4 the optical absorption spectrum of SiO$_2$-Ag hybrids and SiO$_2$ aerogel.
SERS experiments

![Figure S5](image)

Figure. S5 Raman responses of SiO$_2$-Ag hybrids in the presence of 4-ATP at different concentrations

![Figure S6](image)

Figure. S6 Raman responses of 2 μL of 1×10$^{-1}$ M 4-ATP ethanol solution dispersed to an area of 12.25 mm2 for the silicon wafer.

Text S1. Detailed calculative process of the enhancement factor

We use the peak at 1439 cm$^{-1}$ (for 4-ATP) to estimate the enhancement factor (EF). The SERS EF is a quantitative measure of the Raman signal amplification of an analyte. The EF can be calculated according to the equation $\text{EF} = (I_{\text{SERS}}/I_{\text{bulk}})(N_{\text{bulk}}/N_{\text{surface}})$. Where I_{SERS} and I_{bulk} were the peak intensities of 1×10$^{-10}$ M 4-ATP on SiO$_2$-Ag hybrids and 1×10$^{-1}$ M 4-ATP on the silicon wafer at 1439 cm$^{-1}$, respectively. N_{surface} and N_{bulk} are the number of 4-ATP molecules excited by the laser beam on the SiO$_2$-Ag hybrids substrate and the silicon wafer, respectively. Herein, a certain volume (V_{SERS}) and concentration (C_{SERS}) 4-ATP ethanol solution was dispersed to an area of Raman
concentration for non-SERS Raman spectra certain S_{SERS} at the SiO$_2$-Ag hybrids substrate. For non-SERS Raman spectra, a certain volume (V_{bulk}) and concentration (C_{bulk}) 4-ATP ethanol solution was dispersed to an area of S_{bulk} at a clean Si substrate. Both the substrates are dried in the air. Considering the area of laser spot is the same, the equation thus becomes: $EF = (I_{\text{SERS}}/I_{\text{bulk}})(C_{\text{bulk}}V_{\text{bulk}}/C_{\text{SERS}}V_{\text{SERS}})(S_{\text{SERS}}/S_{\text{bulk}})$. In our experiment, 2 mL of 1×10^{-9} M 4-ATP solution was dispersed to an area of 14 mm2 for the SiO$_2$-Ag hybrids substrate shown in Figure. S4 and 2 μL of 1×10^{-1} M 4-ATP ethanol solution is dispersed to an area of 12.25 mm2 for the silicon wafer shown in Figure. S5. For the band at 1439 cm$^{-1}$, $I_{\text{SERS}}/I_{\text{bulk}}$ is $2038/187=10.9$. Therefore average enhancement factor for the band at 1439 cm$^{-1}$ was calculated to be 1.25×10^6.

Scheme S1 Samples preparation methods: (a) Dripping the NTO ethanol solution (2 μL) on the surface of the substrates. (b) Soaking the SiO$_2$-Ag hybrids substrate in 1×10^{-5} M NTO ethanol solution (2 mL).
Figure. S7 Raman responses of SiO$_2$-Ag hybrids in the presence of NTO at different concentrations

Text S2. Detailed calculative process of the LOD

The standard curve of NTO was plotted as:

$$Y = A + B \times \log_{10} X$$

where, A and B are the variable obtained via least-square root linear regression for the signal-concentration curve and variable Y represents the normalized SERS signal ($I_{\text{NTO}}/I_{\text{blank}}$) at NTO concentration of $X(C_{\text{NTO}})$. where, SD is the standard deviation and Y_{blank} is the SERS signal of blank sample.

The LOD was calculated as $\text{LOD}=10^\left[\frac{Y_{\text{blank}} + 3\text{SD}}{Y_{\text{blank}} - A}/B\right]$.

SD was calculated according to the well-known formula:

$$\text{SD} = \sqrt{\frac{1}{n-1} \times \sum_{i=1}^{n} (X_i - X_{\text{average}})^2}$$

where, n is the total number of the NTO standard sample. X_i is the “i” sample of the series of measurements. X_{average} is the average value of the SERS signals obtained for the specific series of identical samples repeated n times.

As shown in Figure. 5(b) and Figure. S6, SD=0.9892, A=6.905, B=-0.530, Y_{blank}=37, The LOD was calculated to be 7.94×10^{-10} M.

Table S1. The SERS intensity of the 847 cm$^{-1}$ bands from thirty dots.

<table>
<thead>
<tr>
<th>Number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td>Intensity</td>
<td>23416</td>
<td>25396</td>
<td>24234</td>
<td>21838</td>
<td>25783</td>
<td>22797</td>
<td>21232</td>
<td>26009</td>
<td>20417</td>
<td>21543</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensity</td>
<td>22940</td>
<td>23137</td>
<td>22972</td>
<td>21001</td>
<td>23250</td>
<td>22718</td>
<td>23598</td>
<td>21623</td>
<td>2332</td>
<td>22493</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensity</td>
<td>25131</td>
<td>26038</td>
<td>24731</td>
<td>23799</td>
<td>22094</td>
<td>26698</td>
<td>21695</td>
<td>24330</td>
<td>23363</td>
<td>26840</td>
</tr>
</tbody>
</table>