Supporting Information

Europium chelate-labeled lateral flow assay for rapid and multiple detection of β lactam antibiotics by the penicillin-binding protein

Xiaogang Li^{a, #}, Zhifeng Pan^{b, #}, Manyu Li^c, Xinmiao Jia^a, Suhan Zhang^c, Hang Lin^c,

Juntao Liu^c, Liangkun Ma^{c*}

a Medical Science Research Center, Peking Union Medical College Hospital, Peking

Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730

b School of Life Science, Fudan University, Shanghai 200433

c Department of Obstetrics and Gynecology, Peking Union Medical College Hospital,

Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing,

100730

*Address correspondence to maliangkun@pumch.cn

[#] The two authors contributed equally to this work.

Table of contents

S1 Expression and purification of recombinant PBP

Figure S1 Size distribution of pure microspheres (A) and lanthanide chelate-loaded microspheres (B)

Figure S2 Fluorescence lifetime of europium chelate-loaded polystyrene microspheres

Figure S3 Analytical performance of the assay for the detection of β -lactams

Figure S4 Workflow for LFRA

Table S1 The comparison of the proposed method with reported studies

S1 Expression and purification of recombinant proteins

1

The pET-28a (+)-PBP plasmid was synthesized by Wuxi Qinglan Biotech. Inc(wuxi, Jiangsu, China). Escherichia coli BL21(DE3) was transformed with the pET-28a (+)-PBP plasmid. For the lab-scale production of recombinant proteins, a modified protocol for expression was used. Briefly, precultures were grown at 37 °C for 6 h in 40 ml Luria-Bertani (10 g of tryptone, 5 g of yeast extract, 10 g of NaCl per liter) with 200 rpm shaking to an OD600 of 0.8. The expression of PBP was induced by the addition of IPTG to a final concentration of 1 mM, and the induced cultures were shaken for 16 h at 25 °C. Cells were harvested and resuspended in 50 mM sodium phosphate pH 8, 500 mM NaCl, and 10 mM imidazole. Cell lysis was performed by a 45-min incubation with 0.25 mg/ml lysozyme at room temperature (RT) followed by 3 freeze-thaw cycles at -196 °C and 37 °C, respectively. DNA was digested with 5 µg/ml DNase I for 15 min at RT. Cellular debris was pelleted at $20,000 \times g$ and 4 °C. The supernatant containing 6x-histidine-tagged recombinant fusion proteins was applied to a His-tag Protein Purification Kit following the manufacturer's instructions (Beyotime Biotechnology).

The purified PBP (as assessed by 10% SDS-PAGE with Coomassie Brilliant Blue staining) was stored at -20 °C in the presence of 10% glycerol. The protein concentration was determined by the Bradford method.

Amino Acid Sequence of PBP:

MGSSHHHHHHSSGLVPRGSHMRLTELREDIDAILEDPALEGAVSGVVVVDTA TGEELYSRDGGEQLLPASNMKLFTAAAALEVLGADHSFGTEVAAESAPGRRG EVQDLYLVGRGDPTLSAEDLDAMAAEVAASGVRTVRGDLYADDTWFDSER LVDDWWPEDEPYAYSAQISALTVAHGERFDTGVTEVSVTPAAEGEPADVDL GAAEGYAELDNRAVTGAAGSANTLVIDRPVGTNTIAVTGSLPADAAPVTALR TVDEPAALAGHLFEEALESNGVTVKGDVGLGGVPADWQDAEVLADHTSAEL SEILVPFMKFSNNGHAEMLVKSIGQETAGAGTWDAGLVGVEEALSGLGVDT AGLVLNDGSGLSRGNLVTADTVVDLLGQAGSAPWAQTWSASLPVAGESDPF VGGTLANRMRGTAAEGVVEAKTGTMSGVSALSGYVPGPEGELAFSIVNNGH SGPAPLAVQDAIAVRLAEYAGHQAPE

Figure S1 Size distribution of pure microspheres (A) and lanthanide chelateloaded microspheres (B)

(A)

Figure S2 The fluorescence lifetime of europium chelate-loaded polystyrene microspheres

The assay can quantitatively detect β -lactams by measuring the fluorescence signal. To investigate the quantitative determination potential of the detection strategy for β lactams, penicillin G, amoxicillin, and cefmetazole were employed as positive controls. The standard curve of the assays is shown in Figure S3, indicating the quantitative determination potential of a specific β -lactam antibiotic.

(A) penicillin G

(C) cefmetazole

Method	System	Detection limit (ng/mL)	Compound quantity	Time	Reference
Lateral flow fluorescent assay	Europium chelate-labeled lateral flow assay for rapid and multiple detection of β -lactam antibiotics by the penicillin-binding protein	4-500	25	10 min	This work
Electrochemical assay	Anti-penicillin G conjugation was used to develop a competitive immunosensor assay for the detection of penicillin G and other β -lactam antibiotics	5	1	60 min	1
	Electrochemical technique was used for the elaboration and characterization platform of ampicillin based on surface plasmon resonance	430	1	50 min	2
	Electrochemical aptasensor for ampicillin detection based on the protective e ct of aptamer-antibiotic conjugate towards DpnII and Exo III digestion	0.013	1	80 min	3
	Immobilized enzyme penicillinase (Pen X) was modified onto the modified electrode to prepare a biosensor	0.64	1	40min	4
Colorimetric assay	Ninhydrin, p-dimethylaminobenzaldehyde, and Fehling's reagent are used as reagents to develop paper-based test for amoxicillin	1.5*106	1	10 min	5
	Colorimetric assay for ampicillin was developed based on Cu-BCA complexation	26*10 ³	1	30 min	6
chemiluminescence assay	Chemiluminescence (CL) micro-flow system combined with on-line solid phase extraction (SPE) was used for determination of β -lactam antibiotics (penicillin, cefradine, cefadroxil, cefalexin) in milk	40-500	4	20 min	7
	Enhanced chemiluminescence of carminic acid permanganate by CdS quantum dot	5.8	1	30 min	8
Mass spectrometry	Ultra-high-performance liquid chromatography-tandem mass spectrometry	500-1000	7	20 min	9
	Liquid chromatography coupled with tandem mass spectrometric	1000-2000	8	15 min	10

Table S1 The comparison of the proposed method with reported studies

References

- [1] G. Merola, E. Martini, M. Tomassetti, J. Pharmaceut. Biomed., 2015, 106, 186.
- [2] A. Blidar, B. Feier, M. Tertis, Anal. Bioanal. Chem., 2019, 411, 1053.
- [3] T. Wang, H. Yin, Y. Zhang, Talanta, 2019, 197, 42.
- [4] Y. Xiu, R. Luo, B. Han, Food Anal. Method., 2020, 13, 617.
- [5] A.V. Marakaeva, I.V. Kosyreva, Chem. Pap., 2020, 74, 2381.
- [6] S. Kaur, M. Garg, S. Mittal, Sensor. Actuat. B-chem., 2017, 248, 234.
- [7] W. Liu, Z.J. Zhang, Z.Q. Liu, Anal. Chim. Acta, 2007, 592, 187.
- [8] A. Khataee, A. Hasanzadeh, R. Lotfi, Talanta, 2016, 152, 171.
- [9] R.R. Bonnin, A. Ribera, A.A. Roca, Anal. Chim. Acta, 2017, 468, 215.
- [10] R. Bellouard, G. Deslandes, C. Morival, J. Pharmaceut. Biomed., 2020, 178, 112904.