ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Simultaneous determination of ascorbic acid, uric acid and dopamine using silver nanoparticles and copper monoamino-phthalocyanine functionalised acrylate polymer

Supporting Information

Zina Fredj^{a,b}, Mounir Ben Ali^{a,b}, Mohammed Nooredeen Abbas^c, Eithne Dempsey^{*d}

1. Electrochemical characterisation of

modified electrodes

Cyclic voltammetry was used to examine uric and ascorbic acid signals (1 μ M in 0.1 M PBS) at bare, Ag NPs and Cu-MAPA modified glassy carbon electrodes (SI Figures 1 and 2).

Fig 1. CVs of 1 μ M uric acid prepared in 0.1 M PB (pH 7.4) at bare and modified electrodes GCE, GCE/AgNP, GCE/Cu-MAPA and GCE/Cu-MAPA/AgNP (100 mV s⁻¹).

Fig 2. CVs of 1 μM ascorbic acid prepared in 0.1 M PB (pH 7.4) at bare and modified electrodes GCE, GCE/AgNP, GCE/Cu-MAPA and GCE/Cu-MAPA/AgNP (100 mV s $^{-1}$).

2. pH and scan rate effect

The peak current of dopamine increased with decreasing pH which was constant from pH 3-6. As pH 7 is considered as physiological pH, it was selected going forward as the working pH for all measurements.

^{a.} University of Sousse, Higher Institute of Applied Sciences and Technology of Sousse, GREENS-ISSAT, 4003 IbnKhaldoun Sousse, Tunisia

^{b.} NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse, Sahloul, 4034, Sousse, Tunisia ^{c.} Electroanalytical Laboratory, National Research Centre, Cairo, Egypt

^d Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland.

[†] Supplementary information available should be included here]. See DOI:

Fig 3. Response to 1 μM dopamine in different pH solutions (pH 3 to 11,) at a scan rate of 100 mV s'1.

Fig 4. a) Cyclic voltammetry response of 1 μ M dopamine at GCE/Cu-MAPA/AgNP at different scan rates from 10 to 100 mV s⁻¹. b) Square root of scan rate vs. peak current.

The anodic peak current of dopamine increased upon increasing scan rates from 10 to 100 mV s⁻¹ and the peak currents had a dependence on the square root of scan rates from 10 to 100 mV s⁻¹ with correlation coefficient of 0.9496. This indicated that a predominately diffusion controlled current was evident with the possibility of some adsorptive effects due to non-ideal linearity.

3. Reflectance microscopy surface images

Reflectance microscopy was used to visualise the surfaces of AgNP, Cu-MAPA and Cu-MAPA on AgNP which were dropcast on silicon surfaces and visualised in bright field (Figure 4). The Ag NP ranged from large aggregates (20-50 μ m) to smaller <1 μ m particles with larger aggregates formed in the presence of Cu MAPA.

500 µm

Journal Name

Fig. 5 Reflectance microscopy images on silicon substrates x 20 bright field (a))Ag NPs (b) Cu-MAPA (c) Cu-MAPA on AgNPs