Supplementary information

Complete Capillary Electrophoresis Process on a Drone: Towards a Flying Micro-lab

Tomas Drevinskas<sup>1\*</sup>, Audrius Maruška<sup>1\*</sup>, Valdas Girdauskas<sup>2</sup>, Gediminas Dūda<sup>1</sup>, Jelena Gorbatsova<sup>3</sup>, Mihkel Kaljurand<sup>3,1</sup>

<sup>1</sup>Instrumental Analysis Open Access Centre, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, LT44404 Kaunas, Lithuania

<sup>2</sup>Department of Physics, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, LT44404 Kaunas, Lithuania

<sup>3</sup>Department of Chemistry, Faculty of Sciences, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia

\*Correspondence to: Prof. Habil. Dr. Audrius Maruška audrius.maruska@vdu.lt



Supplementary Fig. S1. Schematic electrical wiring diagram. Designed using KiCAD.



Supplementary Fig. S2. Schematic diagram of pressure, vacuum and liquid distribution system: (a) sampling mode, sample collection procedure from the air to the vial, (b) vacuum mode, capillary flushing procedure from the vial, (c) pressure mode, separation capillary flushing procedure from the BGE bottle. Numbers: 1 – pressure/vacuum pump, 2 – 3-port, 2-way air valve, 3 – air split, 4 – BGE bottle, 5 – sample vial, 6 – waste bottle, 7 – bottle with pressure sensor



Supplementary Fig. S3 P&ID diagram of a pressure/ vacuum distribution system. Markings: (1) – mini diaphragm 6 V pressure/ vacuum pump, (2) 3-port air split, (3) 3-port 2-way solenoid valve, (4) Pressure/ vacuum gas bottle, (5) pressure sensor, (6) waste bottle, (7) fused silica capillary, (8) sample vial, (9) background electrolyte bottle.



Supplementary Fig. S4. Demonstration of signal compensation and conditioning, when analysis performed on a hovering drone. (a) Original electropherogram, (b) temperature change during analysis, (c) temperature-compensated electropherogram, (d) sensitivity-enhanced electropherogram. Peaks:  $1 - NH_4^+$ , 2 - DEA, 3 - TEA, 4 -system valley. Average wind speed 7 m/ s, gusts up to 10 m/ s. Sampling – 32 min. Added volatile compounds: no more than 1.0 ppm NH<sub>3</sub>, 1.3 ppm DEA, 1.0 ppm TEA. Separation conditions: BGE – 500 mM CH3COOH, injection at  $10s \times 20$  kPa,  $L_{tot}$  30 cm,  $L_{eff}$  23.5 cm, separation voltage potential + 4.0 kV, detection – C4D at 3.3 V 32 kHz square wave.



Supplementary Fig. S5. Demonstration of signal compensation and conditioning, when analysis performed on a landed drone. (a) Original electropherogram, (b) temperature change during analysis, (c) temperature-compensated electropherogram, (d) sensitivity-enhanced electropherogram. Peaks:  $1 - NH_4^+$ , 2 - DEA, 3 - TEA, 4 - system valley. Average wind speed 7 m/ s, gusts up to 10 m/ s. Sampling – 32 min. Added volatile compounds: no more than 1.0 ppm NH<sub>3</sub>, 1.3 ppm DEA, 1.0 ppm TEA. Separation conditions: BGE – 500 mM CH3COOH, injection at  $10s \times 20$  kPa,  $L_{tot}$  30 cm,  $L_{eff}$  23.5 cm, separation voltage potential + 4.0 kV, detection – C4D at 3.3 V 32 kHz square wave.



Supplementary Fig. S6. Schematic diagram representing how the capillary was fixed in order to prevent vibration caused effects on the detection

| Supplementary | Table S1.  | Calibration | conditions | and results |
|---------------|------------|-------------|------------|-------------|
| Supplementary | I dole D1. | Cultoration | conditions | und results |

| No | Analyte               | Calibration | <b>R</b> <sup>2</sup> | Average      | Calibration | Background           | Injection  | Ltot  | Leff  |
|----|-----------------------|-------------|-----------------------|--------------|-------------|----------------------|------------|-------|-------|
|    |                       | equation    |                       | Precision    | Range       | electrolyte          |            | (cm)* | (cm)* |
|    |                       | y=          |                       | (%)          | (mM)        |                      |            |       |       |
| 1  | K <sup>+</sup>        | 0 3335x     | 0.0064                | ~10.3        | 0.0058-     |                      |            |       |       |
|    |                       | 0.33333     | 0.9904                | <10.5        | 0.3700      |                      |            |       |       |
| 2  | Ca <sup>2+</sup>      | 0.8642v     | 0.0013                | ~9.6         | 0.0059-     |                      |            |       |       |
|    |                       | 0.00428     | 0.7715                | < 5.0        | 0.3818      |                      |            |       |       |
| 3  | Na <sup>+</sup>       | 0.6226v     | 0.9953                | <6.5         | 0.0039-     |                      |            |       |       |
|    |                       | 0.0220X     |                       |              | 0.2500      | 500 mM               | 100×201-Do | 20    | 22.5  |
| 4  | $\mathrm{NH_{4}^{+}}$ | 0 3363v     | 0.0012                | -15          | 0.0133-     |                      |            |       |       |
|    |                       | 0.5505X     | 0.9913                | <b>\4</b> .3 | 0.3127      | CH <sub>3</sub> COOH | 105×20KI a | 50    | 23.5  |
| 5  | Diethylamine          | 0 7199v     | 0 008/                | ~? ?         | 0.0151-     |                      |            |       |       |
|    |                       | 0.71777     | 0.7704                | ~2.2         | 0.9680      |                      |            |       |       |
| 6  | Triethylamine         | 0.9175 x    | 0 9967                | ~3.3         | 0.0112-     |                      |            |       |       |
|    |                       | 0.7175X     | 0.7707                | <3.5         | 0.7165      |                      |            |       |       |
| 7  | BSA*                  | 18 202x     | 0.9925                | <11.1        | 0.0005-     |                      |            |       |       |
|    |                       | 10.2028     | 0.7725                | <11.1        | 0.0341      |                      |            |       |       |
| 8  | Formic acid           | 0.1212x +   | 0 9922                | <11.6        | 0.0078-     |                      | 10s×20kPa  |       |       |
|    |                       | 0.0021      | 0.7722                | <11.0        | 0.2500      | 150 mM               |            | 35    | 28.5  |
| 9  | Acetic acid           | 0.2909x +   | 0.9857                | <10.3        | 0.0078-     | AMP**                | 103×20KI d | 55    | 20.5  |
|    |                       | 0.0023      | 0.7057                | <10.5        | 0.2500      |                      |            |       |       |
| 10 | Methylphosphonic      | 0.2465x     | 0.0035                | -38          | 0.0400-     |                      |            |       |       |
|    | acid                  | 0.2403X     | 0.7755                | <3.0         | 0.2000      |                      |            |       |       |
| 11 | Ethylphosphonic       | 0.0867x +   | 0.9925                | < 8.0        | 0.0400-     |                      |            |       |       |
|    | acid                  | 0.0022      | 0.7725                | <0.0         | 0.1000      | 10 mM                |            |       |       |
| 12 | Propylphosphonic      | 0.0857x +   | 0 9934                | < 8 8        | 0.0400-     | MFS***/I -           | 5s×20kPa   | 35    | 28.5  |
|    | acid                  | 0.0028      | 0.7754                | <0.0         | 0.1000      | His***               | 55×20KI u  | 55    | 20.5  |
| 13 | Ethyl                 | 0.0725x +   | 0.9956                | <12.6        | 0.0400-     |                      |            |       |       |
|    | methylphosphonate     | 0.0011      | 0.7750                | ×12.0        | 0.1000      |                      |            |       |       |
| 14 | Pinacoyl              | 0.0587x +   | 0 9800                | <62          | 0.0400-     |                      |            |       |       |
|    | methylphosphonate     | 0.0007      | 0.2002                | <b>\0.2</b>  | 0.1000      |                      |            |       |       |

\* BSA – Bovine serum albumin

- \*\* AMP 2-Amino-2-methyl-1-propanol
- \*\*\* MES 2-(N-morpholino)ethanesulfonic acid
- \*\*\*\* L-His L-histidine

Supplementary Table S2. Sampling conditions

| No | Analyte               | Reagent                                      | Method          | Concentration | Added    | Sampling | Determined   |
|----|-----------------------|----------------------------------------------|-----------------|---------------|----------|----------|--------------|
|    |                       | concentration                                |                 | in the air    |          | Time     | in collected |
|    |                       |                                              |                 | (ppm)         |          | (min)    | sample       |
|    |                       |                                              |                 |               |          |          | (mM)         |
| 1  | CH-COOH               | 00.0.%                                       | Evaporation     | 70.3          | 10 µI    | 16       | $0.0647 \pm$ |
| 1  | СпзСООП               | 99.9 %                                       | Evaporation     | 79.5          | 10 µL    | 10       | 0.0026       |
| 2  | СН-СООН               | 99.9 %                                       | Evaporation     | 15.9          | 2 µI     | 16       | 0.0229 ±     |
| 2  | chigeoon              | JJ.J 70                                      | Lvaporation     | 15.9          | 2 μL     | 10       | 0.0013       |
| 3  | нсоон                 | 99.9 %                                       | Evaporation     | 120.3         | 10 µI    | 16       | 0.1074 ±     |
| 5  | neoon                 | JJ.J 70                                      | Lvaporation     | 120.5         | τομε     |          | 0.0114       |
| 4  | НСООН                 | 99 9 %                                       | Evaporation     | 24.0          | 2 пГ     | 16       | 0.0490 ±     |
| •  | neoon                 | <i>,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | L'uportation    | 2110          | 2 μ2     | 10       | 0.0036       |
| 5  | $\mathbf{NH}_{4}^{+}$ | 25 %                                         | Evaporation     | 51.2          | 10 uL    | 4        | 0.0381 ±     |
| 5  | 1 114                 | 20 /0                                        | Lvaporation     | 51.2          | 10 µL    | +        | 0.0108       |
| 6  | $\mathbf{NH}_{4}^{+}$ | 25 %                                         | Evaporation     | 51.2          | 10 uL    | 8        | 0.0985 ±     |
|    |                       | /·                                           | _ ·             |               |          |          | 0.0070       |
| 7  | $\mathbf{NH}_{4}^{+}$ | 25 %                                         | Evaporation     | 51.2          | 10 uL    | 16       | 0.1297 ±     |
|    |                       |                                              | 2 · up or union | 0112          | 10 pi2   |          | 0.0072       |
| 8  | $\mathbf{NH}_{4}^{+}$ | 0.5 %                                        | Evaporation     | 1.0           | 10 uL    | 32       | 0.0184 ±     |
|    | · •                   |                                              |                 |               | - 1.     | -        | 0.0009       |
| 9  | DEA*                  | 99.9 %                                       | Evaporation     | 43.9          | 10 uL    | 4        | $0.0298 \pm$ |
|    |                       |                                              |                 |               | - 1.     |          | 0.0034       |
| 10 | DEA                   | 99.9 %                                       | Evaporation     | 43.9          | 10 µL    | 8        | $0.0750 \pm$ |
|    |                       |                                              | 1               |               | •        |          | 0.0022       |
| 11 | DEA                   | 99.9 %                                       | Evaporation     | 43.9          | 10 uL    | 16       | $0.0706 \pm$ |
|    |                       |                                              |                 |               | - 1.     | -        | 0.0029       |
| 12 | DEA                   | 2.0 %                                        | Evaporation     | 1.3           | 15 µL    | 32       | 0.0090 ±     |
|    |                       |                                              | 1               |               |          |          | 0.0007       |
| 13 | TEA**                 | 99.9 %                                       | Evaporation     | 32.5          | 10 µL    | 4        | 0.0209 ±     |
|    |                       |                                              | *               |               | <u> </u> |          | 0.0035       |
| 14 | TEA                   | 99.9 %                                       | Evaporation     | 32.5          | 10 µL    | 8        | $0.0577 \pm$ |
|    |                       |                                              | 1               |               | ••••     |          | 0.0037       |

| 15 TE             | ТЕЛ              | 00.0 %         | Evaporation | 32.5       | 10 JI | 16           | 0.1102 ±     |
|-------------------|------------------|----------------|-------------|------------|-------|--------------|--------------|
| 15 ILA            |                  | <i>77.7</i> 70 | Lvaporation | 52.5       | 10 µL | 10           | 0.0038       |
|                   | 2.0 %            | Evaporation    | 1.0         | 15 μL      | 32    | $0.0384 \pm$ |              |
| 16 IEA            |                  |                |             |            |       | 0.0042       |              |
| 17 K <sup>+</sup> | <b>V</b> +       | 32 mg/ L       | Ultrasonic  | NI / A *** | N/A   | 4            | 0.0303 ±     |
|                   | К                |                | atomization | 1V/ $T$    |       |              | 0.0020       |
| 18                | K <sup>+</sup>   | 32 mg/ L       | Ultrasonic  | N/A        | N/A   | 8            | $0.0305 \pm$ |
|                   |                  |                | atomization | N/A        |       |              | 0.0023       |
| 19 H              | <b>V</b> +       | 32 mg/ L       | Ultrasonic  | N/A        | N/A   | 16           | 0.0391 ±     |
|                   | K.               |                | atomization | N/A        |       |              | 0.0044       |
| 20                | Na <sup>+</sup>  | 1727 mg/ L     | Ultrasonic  | N/A        | N/A   | 4            | $0.0750 \pm$ |
|                   |                  |                | atomization |            |       |              | 0.0080       |
| 21                | Na <sup>+</sup>  | 1727 mg/ L     | Ultrasonic  | N/A        | N/A   | 8            | 0.2006 ±     |
|                   |                  |                | atomization |            |       |              | 0.0104       |
| 22                | Ca <sup>2+</sup> | 552 mg/ L      | Ultrasonic  | N/A        | N/A   | 4            | 0.0123 ±     |
|                   |                  |                | atomization |            |       |              | 0.0020       |
| 23                | Ca <sup>2+</sup> | 552 mg/ L      | Ultrasonic  | N/A        | N/A   | 8            | 0.0331 ±     |
| 23                |                  |                | atomization |            |       |              | 0.0024       |
| 24                | BSA****          | 1 mg/ mL       | Ultrasonic  | N/A        | N/A   | 8            | $0.0034 \pm$ |
|                   |                  |                | atomization |            |       |              | 0.0006       |
| 25                | BSA              | 1 mg/ mL       | Ultrasonic  | N/A        | N/A   | 16           | $0.0076 \pm$ |
|                   |                  |                | atomization |            |       |              | 0.0003       |

DEA\* - Diethylamine

TEA\*\* - Triethylamine

N/A\*\*\* - Not applicable

BSA\*\*\*\* - Bovine serum albumin

$$LOQ = \frac{10\sigma}{S} (Supplementary equation S1)$$

<sup>1</sup>Where LOQ is the limit of quantification, S is the slope of calibration curve and  $\sigma$  is the standard deviation of the response.

$$C_{mg/L} = \frac{V_s \times C_{\%} \times \rho_s}{V_{box} \times 100\%} (Supplementary equation S2)$$

Where  $C_{mg/L}$  – is the concentration of a substance in the air (mg/ L),  $V_s$  – added solution ( $\mu$ L),  $C_{\%}$  – percentage of substance solution (%),  $\rho_s$  – solution density (mg/  $\mu$ L),  $V_{box}$  – volume of the box (L)

$$C_{ppm} = \frac{m \times 10^3}{V} \times \frac{24.46}{MW}$$
 (Supplementary equation S3)

<sup>2</sup>Where  $C_{ppm}$  - air concentration (ppm) by volume, at 25 °C and 760 mm Hg, m – actual mass of substance (mg), V – air volume (L), 24.46 – the volume (L) of 1 mole of gas (or evaporated substance) at 25 °C and pressure of 760 mm Hg, MW – molecular weight, grams/ mole.

## References

- Ich. ICH Topic Q2 (R1) Validation of Analytical Procedures : Text and Methodology. International Conference on Harmonization. 2005, p 17.
- (2) Air Concentration Calculations for Comparison to OSHA Standards. In *Niosh Manual of Analytical Methods (NMAM)*; Eller, P. M., Cassinelli, M. E., Eds.; U.S. Department of Health and Human Services: Cincinnati, Ohio, 1994; p A-2.