Supporting Information

Molybdenum disulfide@5-carboxyfluorescein-probe biosensor for unamplified specific fragment detection in long nucleic acids based on magnetic composite probe-actuated deblocking of secondary structure

Bin Guo^{a,b,1}, Yurong Yan^{a,1}, Lu Fan^a, Haiping Wu^a, Min Zhao^a, Xiaolei Duan^a, Wei Cheng^c, Shijia Ding^{a,*}

^aKey Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China

^bDepartment of Clinical Laboratory, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China

^cThe Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China

¹*These authors contributed equally to this work.*

*Corresponding author: Tel: +86-23-68485688, Fax: +86-23-68485786.

E-mail address: dingshijia@cqmu.com.cn and dingshijia@163.com

Oligonucleotides	Sequence (5'-3') ^a				
PML probe	TTCATAAGCTTGAGACAATTCACTGGCCACGTGGTTGC				
RARα probe	CACTATCTCTTCAGAACTTT <i>TTGTCTCAAGCTTATGAAA</i> <u>ATGAACTC</u> <u>AAGGTACG</u>				
Link DNA	NH ₂ -TTTTTTCTCGTACG <u>CGTACCTTGAGTTCAT</u>				
Assistant sequence	ATGAACTCAAGGTACGCGTACGAG				
FAM probe	6-FAM -TGGGTCTCAATGGCTGCCTCCCC				
PML/RARa	CCCAACAGCAACCACGTGGCCAGTGGCGCCGGGGGGGGGG				
Bcr1 (L) Target	TTGAGACCCAGAGCAGCAGTTCTGAAGAGATAGTGCCCAGCCCT CCCTCGCCACCCC				
PML/RARa	AGGTCATCAAGATGGAGTCTGAGGAGGGGAAGGAGGCAAGCCA				
Bcr2 (V) Target	TTGAGACCCAGAGCAGCAGTTCTGAAGAGATAGTGCCCAGCCCT CCCTCGCCACCCC				
PML/RARa	CGCCTGCAGGACCTCAGCTCTTGCATCACCCAGGGGAAAGCCAT				
Bcr3 (S) Target	TGAGACCCAGAGCAGCAGTTCTGAAGAGATAGTGCCCAGCCCT				
	CCCTCGCCACCCC				
PML DNA	CCCAACAGCAACCACGTGGCCAGTGGCGCCGGGGGGGGGG				
	AACGCGTTGTGGTGATCAGCAGCTCGGAAGACTCAGATGCCGA AAACTCGGTCTCTT				
RARa DNA	CTTGAATCCTGCCAGCAGTGCCATTGAGACCCAGAGCAGC				
	CCATTGAGACCCAGAGCAGCAGTTCTGAAGAGATAGTGCCCAG				
	CCCTCCCTCGCCACCCC				
Short target	GCGCCGGGGAGGCAGCCATTGAGACCCAGAGCAGC				
SM PML/RARa	CCCAACAGCAACCACGTGGCCACTGGCGCCGGGGGGGGGG				
Bcr1 (L) Target	TTGAGACCCAGAGCAGCAGTTCTGAAGAGATAGTGCCCAGCCCT				
	CCCTCGCCACCCC				
TM PML/RARα	CCCAACAGCAACCACGTGGCC <u>GCC</u> GGCGCCGGGGAGGCAGCCA				
Bcr1 (L) Target	TTGAGACCCAGAGCAGCAGTTCTGAAGAGATAGTGCCCAGCCCT				
()	CCCTCGCCACCCC				

Table S1 Oligonucleotides employed in the present work

NC PML/RARa	CCCAACAGCAACCACGTGGC <u>TGCCA</u> GCGCCGGGGAGGCAGCCA
Ber1 (L) Target	TTGAGACCCAGAGCAGCAGTTCTGAAGAGATAGTGCCCAGCCCT
Derr (L) runger	CCCTCGCCACCCC
TWM PML/RARa	CCCAACAGCAACCACGTGGCCAGTGGCGCCGGGGGGGGGG
Bcr1 (L) Target	$TTGAGACCCAGAGCAGCAGCAGCTCTG\underline{T}AGAGATAGTGCCCAGCCCT$
Derr (L) runger	CCCTCGCCACCCC

^aSM, single-base mismatched oligonucleotide; TM, three-base mismatch oligonucleotide; NC, non-complementary oligonucleotide; TWM, two mismatch oligonucleotide (The purple and underline portions represent mismatch oligonucleotides). The underline portions represent complementary sequence between RAR α probe and Link DNA. The italic portions represent complementary sequence between PML probe and RAR α probe. The red portions represent complementary sequence between Link DNA and Assistant sequence. The blue portions represent complementary sequence between Link DNA and Assistant sequence.

Group		Р	arallel tes	ts	Average	RSD ^a	CV ^b (%)	
Intra-assay	532	546	539	545	538	540	5.72	1.05
Inter-assay	529	548	535	541	537	538	7.07	1.31

Table S2 Fluorescence intensity of 10 nM target for replicate tests at intra-assay and inter-assay

^a Relative standard deviation, ^b Coefficient of variation.

Sample no.	Spiking value (nM)	Assayed value (nM)	RSD ^a	CV ^b (%)	Recovery (%)
1	0.01	0.0105	6.82	5	105
2	0.1	0.0986	6.02	1.4	98.6
3	1.0	1.035	5.51	3.5	103.5

Table S3 Detection of PML/RAR α fusion fragment in serum samples with salmon sperm DNA by the proposed biosensor

^a Relative standard deviation, ^b Coefficient of variation.

Fig. S1 The principle for "Y"-junction-nanostructure to unlock the stem loop structure of PML/RARα DNA "L" subtype.

Fig. S2 Gray-scale value of electrophoresis band of "Y"-CP before (Fig. 1B, Lane 3) and after (Fig. 1B, Lane 2) specific hybridization between MBPs and "Y"-CP.

Fig. S3 (A) UV-vis spectrum of MoS_2 nanosheets before adding FAM. (B) UV-vis spectrum of MoS_2 nanosheets after adding FAM.

Fig. S4 CD spectra for long PML/RARα DNA with stem loop secondary structures (black curve) and short PML/RARα DNA with exposed fusion gene (red curve).

Fig. S5 Optimization of experiment conditions. (A) Evaluation of proportion of MBP: "Y"-CP; (B) Evaluation of MoS_2 concentration; (C) Evaluation of hybridization time between FAM-probe and "Y"-CP@long DNA target. Error bar represents the standard deviation (n = 3).

dG = -8,501 195e1fc0-5c87-4b4e-8e8d-959aaa8c1805

Fig. S6 The secondary structures of non-targets: PML.

 $dG = -4.122 \ ea63b210 - 0681 - 4db0 - 8eef - 364aa21b6494$

Fig. S7 The secondary structures of non-targets: $RAR\alpha$.

 $dG = -6.632 \ 470284c8 - 55e0 - 4fe4 - 8e93 - 59f3b043a8f9$

Fig. S8 The secondary structures of non-targets: "S" subtype.

Fig. S9 The secondary structures of non-targets: "V" subtype.

Fig. S10 Fluorescence emission spectra (A) and fluorescence response signals (B) for selectivity and stability of PML/RAR α detection against short target (a), PML/RAR α DNA "L" subtype (b), two-bases mismatch in RAR α portion (c), single-base mismatch in PML a portion (d), three-bases mismatch in PML a portion (e), non-complementary in PML a portion (f), and blank (g). Error bar represents the standard deviation (n = 3).