Supplementary Material

Molecularly imprinted polymer based monolith pipette tip for solid-phase extraction of 2,4dichlorophenoxyacetic acid in aqueous sample

Beibei Wu^a, Turghun Muhammad^{a,} *, Sailemayi Aihebaier^b, Kal Karim^c, Yiting Hu^a, Sergey A. Piletsky^c

- ^a Key Laboratory of Energy Materials Chemistry, Ministry of Education; Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, PR China;
- ^b Turpan Vocational and Technical College, Turpan 838000, People's Republic of China;
- ^c School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK;
- * Correspondence: turghunm@xju.edu.cn; Tel.: +86-991-8582654

Fig.S1. Photo of PT-SPE connects with pipettor.

Fig.S2. (a) Nitrogen adsorption and desorption isotherms of the HDPE+MIPs mixture and (b) co-sintered monolith of the powder mixtures.

Fig.S3. (a) TG and Derivate TG for the MIPs, HDPE, HDPE+MIPs mixture and HDPE+MIPs monolith.

Fig.S4. Recovery obtained with different polymers

Table S1	PT-SPE	procedure.
----------	--------	------------

Action	Solvent	Volume	Flow-rate
	Solvent	(mL)	(mL/min)
Condition	MeOH-H ₂ O	3.0	1.0
Loading	MeOH-H ₂ O	10.0	1.0
Washing	H_2O	3.0	1.0
Elution	Me/Ac	0.2	0.05