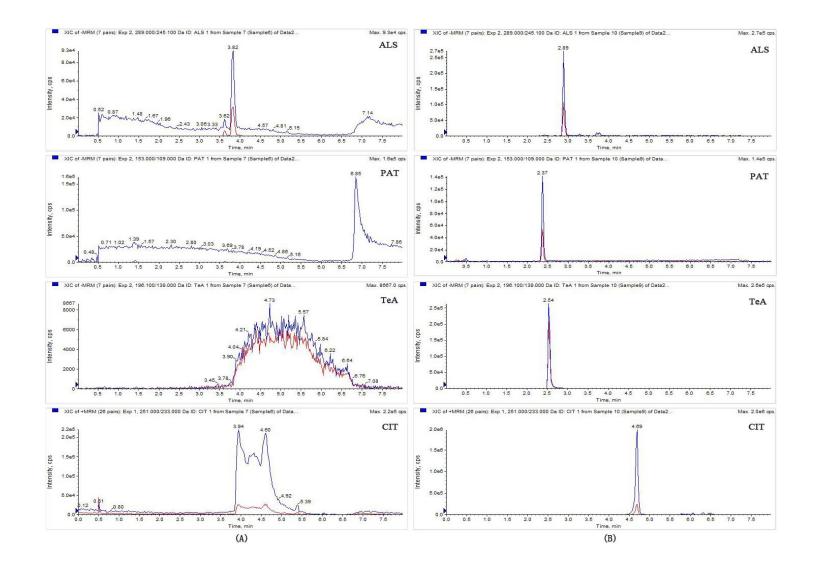

1	A Reliable and Accurate UHPLC-MS/MS Method for
2	Screening of Aspergillus, Penicillium and Alternaria
3	mycotoxins in Orange, Grape and Apple Juices
4	
5	Wenbo Guo ^{1,†} , Junhua Yang ^{1,†} , Xueke Niu ¹ , Emmanuel K. Tangni ² , Zhihui
6	Zhao ¹ , Zheng Han ^{1,*}
7	
8	¹ Institute for Agro-food Standards and Testing Technology, Shanghai Key
9	Laboratory of Protected Horticultural Technology, Shanghai Academy of
10	Agricultural Sciences, Shanghai 201403, China
11	² Organic Contaminants and Additives, Sciensano, Leuvensesteenweg 17, Tervuren 3080,
12	Belgium; emmanuel.tangni@sciensano.be
13	
14	*Correspondence: hanzheng_ok@163.com
15	[†] These authors contributed equally to this work.
16	
17	
10	
18	
19	
20	
21	
21	
22	
23	
24	
24	
25	
26	


3 Figure S1. Comparison of the separation and ionization efficiencies of OTA and AFB₁ between two candidate mobile phases: (A) acetonitrile-water; (B) methanol-water. The concentrations were 5 ng 5 mL⁻¹ for AFB₁ and 20 ng mL⁻¹ for OTA, respectively. 7 Figure S2. Comparison of the separation and ionization efficiencies of ALS, PAT, TeA and CIT between two candidate mobile phases: (A) methanol-water containing 0.1% formic acid; (B) methanol-water containing 5 mmol L⁻¹ ammonium acetate. The concentrations were 50 ng mL⁻¹ for ALS and 20 10 ng mL⁻¹ for PAT, TeA and CIT, respectively.

2 Figure S1. Comparison of the separation and ionization efficiencies of OTA and AFB₁ between two candidate mobile phases: (A) acetonitrile-water; (B) methanol-water.

3 The concentrations were 5 ng mL⁻¹ for AFB₁ and 20 ng mL⁻¹ for OTA, respectively.

4

1 Figure S2. Comparison of the separation and ionization efficiencies of ALS, PAT, TeA and CIT between two candidate mobile phases: (A) methanol-water

2 containing 0.1% formic acid; (B) methanol-water containing 5 mmol L⁻¹ ammonium acetate. The concentrations were 50 ng mL⁻¹ for ALS and 20 ng mL⁻¹ for

3 PAT, TeA and CIT, respectively.