1 Supporting Information

2 Primer design and testing for RPA

The design for haRPA primers specific for resistance gene bla_{CTX-M} cluster 1 followed the 3 4 protocol described elsewhere with few adjustments¹. Five primer pairs were designed based on E. coli bla_{CTX-M-1} gene (GenBank number: X92506.1) and an additional pair was based on 5 published qPCR primers for detection of bla_{CTX-M}². All FWD primers could be combined with 6 all REV primers to maximize primer pair options within the primer test phase. Homogeneous 7 RPA reactions were performed according to the manual. Briefly, 2.4 μ L of each primer (10 μ M), 8 29.5 µL rehydration buffer, 5 µL DNA sample, and 7.2 µL H₂O were added to the freeze dried 9 pellet and the reaction was started by addition of 2.5 µL MgAc (280 mM). After incubation for 10 40 min at 39 °C in a Thermomixer (Eppendorf, Hamburg, Germany) the RPA product was 11 purified using GeneJet PCR Purification Kit (Thermo Scientific, Waltham, USA) and analysed 12 on an 3% agarose gel (w/v). The agarose gel was stained with 5 µL Stain Clear G (Serva 13 Electrophoresis GmbH, Heidelberg, Germany) The amplicons were checked for appropriate 14 15 size and ranked based on DNA amount. In total, 20 different combinations of FWD and REV primers were tested and the two most promising ones were chosen for further testing on the 16 haRPA system. One primer pair showed good amplification in the haRPA assay with FWD-17 sequence 5'-CTGATGAGCGCTTTGCGATGTGCAGCACCAG-3' and REV-sequence 5'-18 TCACGCGGATCGCCCGGAATGGCGGTGTTTAACG-3' and an amplicon length of 352 bp. 19

20 DNA chip production

21 DNA primers were immobilized on the surface using the SciFLEXARRAYER S1 (Scienion, 22 Berlin, Germany), an inkjet microdispensing system, with an unmodified piezo dispense 23 capillary (PDC 80, P-2040, ID-No. 15842 and 54868) at 20 °C and 55% humidity.

24 Heterogeneous asymmetric recombinase polymerase amplification

25 The running and washing buffer was case (0.5% (w/v)) in phosphate buffered saline (PBS). 26 The modified REV-primer (5'-NH₂- C_{12} -tag) was immobilized on the chip surface and the 27 biotinylated FWD-primer was added to the bulk phase to enable CL reaction with streptavidin-28 labelled horseradish peroxidase (strep-HRP). The reaction mix, containing nuclease-free water (10.5 µL), primer mix (5 µL), and buffer (29.5 µL) was added to the lyophilized reagents. 29 Subsequently, 5 µL of DNA extract was added and the reaction was started using 4 µL of 30 magnesium acetate (250 µM). 52 µL of the mixture was injected into the microarray flow cell 31 32 (using a pipette (Eppendorf, Hamburg, Germany)). Afterwards, the chip was inserted into the Munich Chip Reader (MCR) 3 (further developed from the original, including a heatable flow 33 cell as published elsewhere ³, provided by GWK Präzisionstechnik GmbH, Munich, Germany) 34 and a dark frame image was taken with the integrated CCD camera for 60 s. The measurement 35

36 was carried out as published elsewhere ¹. The dark frame image was subtracted from the 37 obtained CL image before automated analysis using the microarray analysis software MCR 38 Image Analyzer (GWK Präzisionstechnik, Munich, Germany). The ten brightest pixels of each 39 spot were analysed. Spots with a deviation of more than 15% were not included and marked 40 as outliers.

41 Bacteria characterization for qPCR testing

42 Table 1: Overview of bacteria for qPCR specificity tests with the ESBL gene and positive or negative

43 characterization for cluster 1.

Bacterial species	ESBL gene	Cluster 1 positive/negative
Enterobacter asburiae	<i>bla</i> _{CTX-M-1}	Positive
Enterobacter cloacae	<i>Ыа</i> _{СТХ-М-15}	Positive
E. coli	<i>Ыа</i> _{СТХ-М-1}	Positive
E. coli	<i>Ыа</i> _{СТХ-М-2}	Negative
E. coli	<i>Ыа</i> _{СТХ-М-3}	Positive
E. coli	<i>Ыа</i> _{СТХ-М-9}	Negative
E. coli	<i>bla</i> _{CTX-M-14}	Negative
E. coli	<i>Ыа</i> _{СТХ-М-15}	Positive
E. coli	<i>bla</i> _{CTX-M-27}	Negative
E. coli	<i>Ыа</i> _{ТЕМ-3}	Negative
K. pneumoniae	<i>Ыа</i> _{СТХ-М-15}	Positive
K. pneumoniae	<i>Ыа</i> _{СТХ-М-55}	Positive
K. pneumoniae	<i>bla</i> _{SHV-18}	Negative
P. aeruginosa	No ESBL	Negative

44

45 Specificity test for qPCR

46 Figure 1: Specificity test for qPCR with DNA in 0.1 ng μL⁻¹. *Kp*: *K. pneumoniae*; *Ec*: *E. coli*; *Eba*:
47 *E. asburiae*; *Ebc*: *E. cloacae*; *Pa*: *P. aeruginosa*; CTX-M-number: with *bla*_{CTX-M-number} gene; SHV: with
48 *bla*_{SHV} gene; TEM: with *bla*_{TEM} gene; blanl: non target control.

- 49 1 C. Kober, R. Niessner and M. Seidel, *Biosens. Bioelectron.*, 2018, **100**, 49–55.
- S. Gröbner, D. Linke, W. Schütz, C. Fladerer, J. Madlung, I. B. Autenrieth, W. Witte
 and Y. Pfeifer, *J. Med. Microbiol.*, 2009, **58**, 912–922.
- S. Lengger, J. Otto, D. Elsässer, O. Schneider, A. Tiehm, J. Fleischer, R. Niessner
 and M. Seidel, *Anal. Bioanal. Chem.*, 2014, **406**, 3323–3334.
- 54