Supporting Information

Naphthalimide-linked new pyridylazo phenol derivative for selective sensing of cyanide ion (CN⁻) in sol-gel medium

Sumit Ghosh,^a Palash Jana^b and Kumaresh Ghosh^{*a}

^aDepartment of Chemistry, University of Kalyani, Kalyani-741235, India. Email: <u>ghosh_k2003@yahoo.co.in</u>

^bDepartment of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal 741246, India

Table 1S. Results of gelation test for 1 and 2.

Solvent	1	2				
DMSO	S	S				
DMF	S	S				
THF	Ι	Ι				
CH ₃ CN	Ι	Ι				
CH ₃ OH	Ι	Ι				
CHCl ₃	S	S				
Diethyl ether	Ι	Ι				
Hexane	Ι	Ι				
Petroleum ether	Ι	Ι				
DCM	S	S				
Toluene	Ι	Ι				
DMSO: H ₂ O (1:1, v/v)	Р	Р				
DMF: H ₂ O (1:1, v/v)	G (6 mg/mL)	Р				
S = Solution; G = Gel (mgc); I = Insoluble; P = Precipitation.						
Gelation was primarily investigated by inversion of vial method						
after 10-15 mins of sample preparation ([Gelator] = 20 mg/mL).						

Fig. 1S. Partial FTIR spectra of 1 in (a) amorphous and (b) gel state.

Fig. 2S. (A) Comparison of UV–Vis spectra of **1** in the sol and xerogel states; (B) Change in (a) color, (b) absorbance and (c) emission of **2** ($c = 2.5 \times 10^{-5} \text{ M}$) in (i) DMF, (ii) DMF-H₂O (19:1, v/v), (iii) DMF-H₂O (17:3, v/v), (iv) DMF-H₂O (3:1, v/v), (v) DMF-H₂O (3:2, v/v) and (vi) DMF-H₂O (1:1, v/v).

Fig. 3S. MMX optimized docked structure of 1 in presence of DMF and water.

Fig. 4S. Phase change of DMF-H₂O (1:1, v/v) gel of 1 (pH = 6.9 using 10 mM HEPES buffer) after the addition of 1 equiv. amount of TBACN.

Fig. 5S. (a) Irradiation of DMF:H₂O (1:1, v/v) gel of **1** with 366 nm UV light at 273K for 5h; (b) UV-vis spectral changes in isomerization study of the gel under 366 nm light irradiation on a thin film for 3h.

Fig. 6S. Change in UV-vis spectra of 1 in (a) DMF:H₂O (1:1, v/v; $c = 1.67 \times 10^{-5} \text{ M}$) and (b) CH₃CN ($c = 2.5 \times 10^{-5} \text{ M}$) upon irradiation of 366 nm light at 273K.

Fig. 7S. Selectivity plot of 1 ($c = 2.5 \times 10^{-5} \text{ M}$) for CN⁻ ion at 522 nm ($c = 1.0 \times 10^{-3} \text{ M}$) in DMF-H₂O (1:1, v/v) from UV-vis titration.

Fig. 8S. Change in colour of DMF solution of 1 ($c = 2.5 \times 10^{-5}$ M) in presence of different anions.

Fig. 9S. Change in absorbance of DMF solution of 1 ($c= 2.5 \times 10^{-5}$ M) upon addition of (a) CN⁻, (b) F⁻ and (c) all anions ($c = 1 \times 10^{-3}$ M) (anions were taken as tetrabutylammonium salts).

Fig. 10S. (a) Benesi–Hildebrand plot and (b) detection limit of 1 ($c = 2.5 \times 10^{-5} \text{ M}$) for TBACN at 522 nm ($c = 1.0 \times 10^{-3} \text{ M}$) in DMF-H₂O (1:1, v/v) from UV-vis titration.

Fig. 11S. UV-vis titration spectra of **2** ($c = 2.50 \times 10^{-5}$ M) upon addition of 6 equiv. amounts of different anions ($c = 1.0 \times 10^{-3}$ M) in DMF-H₂O (1:1, v/v).

Fig. 12S. Selectivity plot of 1 ($c = 2.5 \times 10^{-5} \text{ M}$) for CN⁻ ion at 552 nm ($c = 1.0 \times 10^{-3} \text{ M}$) in DMF-H₂O (1:1, v/v) from fluorescence titration.

Fig. 13S. (a) Benesi–Hildebrand plot and (b) detection limit of **1** ($c = 2.5 \times 10^{-5} \text{ M}$) for TBACN at 552 nm ($c = 1.0 \times 10^{-3} \text{ M}$) in DMF-H₂O (1:1, v/v) from fluorescence titration.

Fig. 14S. Comparison of normalized UV-vis spectra of CN⁻ broken gel of 1 with the gel of 1 and solution of 1 containing CN⁻.

Table 2S : Reported structures for CN⁻ sensing in gel phase.

Entry	Gelator structure	Detection media	Sensing mechanism	solvent	Detection limit (M)	Interference from other anions	Ref.
1	C ₁₈ H ₃₇ , NH O N O H N O H	Gel-to-gel state	Metal Displacement	DMSO	1.6 x 10 ⁻⁶	-	1
2		Gel-to-sol state	Reaction-based	DMF:H ₂ O (2:1, v/v)	1.36 x 10 ⁻⁵	-	2
3	C C C C C C C C C C C C C C C C C C C	Gel-to-sol state	Deprotonation	DMSO	-	F ⁻ and AcO ⁻	3

4		Gel-to-gel state	Deprotonation	DMSO:H ₂ O (8:2, v/v)	-	F^- , AcO ⁻ and $H_2PO_4^-$	4
5		Gel-to-gel state	Metal Displacement	DMF	1.0 x 10 ⁻⁵ 1.0 x 10 ⁻⁷	-	5
6	OC 16H33 N HN-O C 16H33 OC 16H33	Gel-to-gel state	Metal Displacement	EtOH	1.0 x 10 ⁻⁶	-	6
7	Two component gel from citrazinic acid and melamine	Gel-to-sol state	Deprotonation	Air dried gel	-	S ²⁻	7
8	CN CN CN CN	Gel-to-sol state	Reaction-based	CH₃CN	9.36 x 10 ⁻⁶	-	8
9		Gel-to-sol state	Deprotonation	Toluene		F ⁻ and AcO ⁻	9
10		Gel-to-sol state	Reaction-based	Toluene- MeOH (1:2)	4.17 × 10 ⁻⁶	-	9
11		Gel-to-sol state	H-bonding based	DMSO-H ₂ O (1:1, v/v)	1.5 mM	No other anions tested	10
12	$\begin{array}{c} C_{12}H_{25}O \\ C_{12}H_{25}O \\ C_{12}H_{25}O \\ H^{-N} \\ H^{-N} \\ B_{T} \\ \end{array}$	Gel-to-sol state	Deprotonation	DMF:H2O (1:1, v/v)	0.368 mM	-	11
13	$RO \rightarrow HN \rightarrow O$ $RO \rightarrow HN \rightarrow O$ $R = CH_3 \rightarrow N \rightarrow O$	Gel-to-sol state	Deprotonation	DMSO	0.4 x 10 ⁻⁸	No other anions tested	12

14		Gel-to-sol state	Deprotonation	glycerol	In gel: 3.02 x 10 ⁻⁶	-	13
15	N	Gel-to-sol state	Reaction-based	DMSO-H ₂ O (1:1, v/v)	4.18 x10 ⁻¹⁰ (gel)	-	14
16	ON THIS	Gel-to-sol state	Reaction-based	DMSO	1.36×10 ⁻⁴	-	15
This work		Gel-to-sol state	Deprotonation	DMF-H ₂ O (1:1, v/v)	5.53 x 10^{-7} (in DMF- H ₂ O (1:1, v/v))	-	-

¹H NMR (d₆- DMSO, 400 MHz) of 1

¹³C NMR (d₆- DMSO, 100 MHz) of 1

Mass spectrum of 1.

¹H NMR (CDCl₃, 400 MHz) of 2

¹³C NMR (CDCl₃, 100 MHz) of 2

Mass spectrum of 2.

¹H NMR (CDCl₃, 400 MHz) of 4

References

- 1. J. Sun, Y. Liu, L. Jin, T. Chen, B. Yin, Chem. Commun. 2016, 52,768.
- 2. K. Ghosh, S. Panja, Supramol. Chem., 2017, 29, 350.
- 3. K. Ghosh, C. Pati, *Tetrahedron Lett.* 2016, **57**, 5469.
- 4. A. Ghosh, P. Das, R. Kaushik, K. K. Damodaran, D. A. Jose, RSC Adv., 2016, 6, 83303.
- Q. Lin, B. Sun, Q. P. Yang, Y. P. Fu, X. Zhu, T. B. Wei, Y. M. Zhang, Chem. Eur. J., 2014, 20, 11457.
- Q. Lin, T. T. Lu, X. Zhu, B. Sun, Q. P. Yang, T. B. Wei, Y. M. Zhang, Chem. Commun., 15, 51, 1635.
- 7. S. Sarkar, S. Dutta, C. Ray, B. Dutta, J. Chowdhury and T. Pal, *Cryst. Eng. Comm.*, 2015, 17, 8119.
- 8. A. Panja and K. Ghosh, *Chemistry Select*, 2018, **3**, 1809.
- 9. A. Panja and K. Ghosh, Supramol. Chem., 2019, 31, 239.
- 10. S. Sharma, M. Kumari, N. Singh, Soft Matter, 2020, 16, 6532.
- 11. B. Sarkar, P. Prabakaran, E. Prasad and R. L. Gardas, ACS Sustainable Chem. Eng., 2020, 8, 8327.
- F. Hu, M. Cao, J. Huang, Z. Chen, D. Wu, Z. Xu, S. H. Liu and J. Yin, *Dyes and Pigments*, 2015, 119, 108.
- H. Yao, J. Wang, S. Song, Y. Q. Fan, X. W. Guan, Q. Zhou, T. B. Wei, Q. Lin and Y. M. Zhang, New J. Chem., 2018, 42, 18059.
- 14. H. Fang, W. J. Qu, H. H. Yang, J. X. He, H. Yao, Q. Lin, T. B. Wei and Y. M. Zhang, *Dyes and Pigments*, 2020, **174**, 108066.
- 15. F. Mandegani, H. Z. Boeini, Z. Khayat and R. Scopelliti, Talanta, 2020, 219, 121237.