Supplementary data

A turn-on fluorescent probe for Lu³⁺ Recognition and Bio-Imaging in live cells and zebrafish

Mujthaba Aatif Aª, Selva Kumar Rª, S.K. Ashok Kumarª* and Abdul Majeed^b

^aDepartment of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014. Tamil Nadu, India. E-mail: <u>ashokkumar.sk@vit.ac.in</u>

^bDepartment of Zoology and Aquatic Animal Health Laboratory, C. Abdul Hakeem College Melvisharam-632509, Tamil Nadu, India.

Fig. 1S. ¹H NMR spectrum of L

Fig. 2S. ¹³C spectrum of L

Fig. 3S. HR-Mass spectrum of L

Fig. 4S. FTIR spectrum of L

Fig. 5S. LM plot of L

Fig. 6S. Effect of water content on L and L-Lu³⁺

Fig. 7S. Effect of pH on L and L-Lu³⁺

Fig. 8S. Effect of interfering anions on the performance L towards Lu^{3+} determination

Fig. 98. Time-resolved fluorescence decay analysis of L and L-Lu³⁺.

Fig. 10S. ESI-TOF mass spectrum of L-Lu³⁺ complex

Fig. 11S. In vitro cytotoxicity of probe L to gill cell line of Danio rerio (DrG) after 24 h exposure by MTT, NR uptake assay. The individual data points are expressed as the arithmetic mean percentage of control (mean ± SE) (n = 8 replicate)

Fig. 12S. Fluorescence images of acridine orange and ethidium bromide staining. (A) DrG cells exposed to Probe L (10 μ M mL⁻¹) and (B) Control DrG cells, images were captured at 400 \times magnification.

Table 1S. Observed photophysical properties of Ligand L in different solvents

Solvent	λ_{Abs} (nm)	λ _{Em} (nm)	Stokes	Quantum	
			(nm)	(cm ⁻¹)	Yield ^a
CHCl ₃	439	468	29	1411	0.22
ACN	437	485	48	2265	0.05
DMF	436	495	59	2734	0.03
DCM	439	471	32	1548	0.09
THF	432	473	41	2007	0.11
DMSO	438	490	52	2423	0.09
Toluene	432	460	28	1409	0.12
EtOAc	430	469	39	1934	0.19
МеОН	454	491	37	1660	0.07
EtOH	436	481	45	2146	0.06

^a Estimated by comparative William's method by using quinine sulfate as reference.

Name of the Probe	$\begin{array}{ c } \lambda_{ext} \\ (nm) \end{array}$	λ_{em} (nm)	LOD (nM)	K _a (M ⁻¹)	рН	Interference	Biological applications
8-hydroxyquinoline functionalized mesoporous silica ¹⁶	360	490	40	2×10 ⁶	3.3 to 8.3	Al ³⁺ , Tb ³⁺ , Nd ³⁺	NS
8-hydroxyquinoline functionalized mesoporous silica ¹⁷	310	486	82	5 ×10 ⁶	3.3 to 8.3	La ³⁺ , Pr ³⁺	NS
N-[3-methyl]-2-[pyridine-2-amido] phenyl] pyridine-2-carboxamide ¹⁸	310	462	860	2×10 ⁶	NS	Er ³⁺ , Sm ³⁺ , Fe ³⁺	NS
N-(3-methoxy-4- hydroxybenzylidene)salicyloylhydr azone ¹⁹	365	426	93.2	1.36 ×10 ⁴	NS	NS	In vitro Cell imaging
(3-((diphenylphosphoryl)(hydroxy) methyl)-6-methylquinolin-2(1H)- one) ¹⁵	280	394	24.2	5.1 ×10 ⁵	3.0 to 9.0	No interference	NS
L (Present work)	461	504	23	1.43 ×10 ⁴	2.0 to 5.0	No interference	In vitro and In vivo studies using the zebrafish model

Table 2S. Fluorogenic performance of L towards Lu^{3+} recognition and its comparison with previously reported work