Supplementary Material: Developing a systematic method for extraction of

microplastics in soils

Freya Radford^a*, Lina M. Zapata-Restrepo^b, Alice A. Horton^c, Malcolm D. Hudson^b, Peter J. Shaw^b, Ian D. Williams^a

^a Faculty of Engineering and Physical Sciences, University of Southampton, Highfield Campus, University Road, Southampton SO17 1BJ, United Kingdom

^b Faculty of Environmental and Life Sciences, University of Southampton, Highfield Campus, University Road, Southampton SO17 1BJ, United Kingdom

^c National Oceanography Centre, European Way, Southampton, SO14 SZH, UK

Corresponding author: <u>f.radford@soton.ac.uk</u>

Supplementary Materials

Table S 1. Particle size distribution (proportion of clay, silt and sand) for inorganic soils used in the experiment measured using the hydrometer method (Sheldrick and Wang, 1993).
Table S 2. Statistical analysis results for Kruskal Wallis tests to measure differences in: the amount of organic removed from samples of initial high and low organic content by different chemicals and by those chemicals at different temperatures; the recovery efficiency of microplastics from inorganic soils using density separation methods; the recovery efficiency of microplastics from organic soils using a combination of digestion and density separation methods; and the ease of identification of microplastics subjected to different treatments, split into temperatures and chemicals.
Table S 3. Statistical analysis results for Wilcox tests to measure differences in: the amount of organic matter removed from samples of high and low initial organic at 40 and 50°C; the amount of organic removed across all treatments in low and high organic; and the recovery efficiency in inorganic soils using canola oil with and without the use of ultrasound.
Table S 4. Statistical analysis results for one-way ANOVA's to measure differences in: the amount of organic removed across reagents with and without the inclusion of dispersant; recovery efficiency of total microplastics, fragments and small microplastics from inorganic soils using different density separation treatments; and recovery efficiency of total microplastics, fragments and big microplastics from organic soils using different treatments combining digestion and density separation
Table S.5. Statistical analysis results for t-tests to measure differences in the recovery efficiency in inorganic

Figure S 3. Total microplastic recovery from inorganic soils using the three density separation methods (ZnCl₂, NaCl and canola oil) with (+US) and without (-US) the inclusion of an ultrasound step7

Figure S 4. FT-IR spectra for a sample of microplastic spikes using the experiment when treated with density treatments involving NaCl, ZnCl₂, oil and ultrasound (a. big PVC b. small PVC c. small PS d. small LDPE).8

	Clay (%)	Silt (%)	Sand (%)
Soil 1	0.0	14.4	85.6
Soil 2	14.4	24.0	61.6
Soil 3	21.2	29.2	49.6
Soil 4	36.2	26.5	37.3
Soil 5	42.6	37.3	20.2
Soil 6	52.7	46.5	0.8

Table S 1. Particle size distribution (proportion of clay, silt and sand) for inorganic soils used in the experiment measured using the hydrometer method (Sheldrick and Wang, 1993).

Table S 2. Statistical analysis results for Kruskal Wallis tests to measure differences in: the amount of organic removed from samples of initial high and low organic content by different chemicals and by those chemicals at different temperatures; the recovery efficiency of microplastics from inorganic soils using density separation methods; the recovery efficiency of microplastics from organic soils using a combination of digestion and density separation methods; and the ease of identification of microplastics subjected to different treatments, split into temperatures and chemicals.

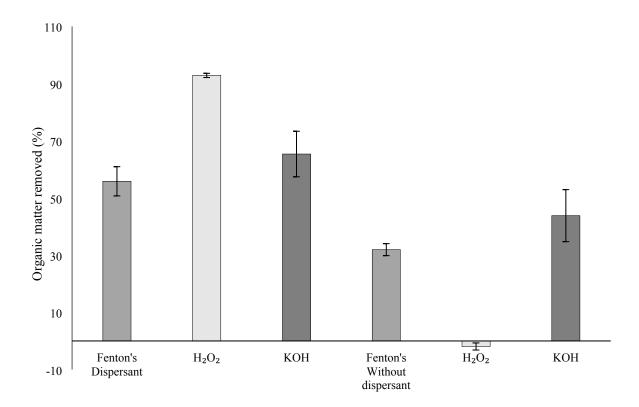
		Kruskal Wal	lis		
		X ₂	df	р	
_	Low organic	11.41	2	<0.01	Reagent only – (H ₂ O ₂ , Fenton's
Organic	High organic	9.58	2	<0.01	and KOH)
matter removed	Low organic	10.43	5	>0.05	Reagent and temperature(H ₂ O
	High organic	15.69	5	<0.01	₂ , Fenton's and KOH at 40 and 50°C)
	fibres	17.26	2	< 0.01	_
_	big	12.29	2	< 0.01	
	PET fragments	48.78	2	< 0.01	
Deserver	PET fibres	59.25	2	< 0.01	
Recovery	HDPE (0.5-1 mm)	8.16	2	<0.05	By treatments
efficiency - (inorganic -	HDPE (0.25- 0.5 mm)	15.6	2	< 0.01	(NaCl, ZnCl ₂ and
soil)	Big PVC	44.31	2	< 0.01	canola oil)
3011	PVC (0.25- 0.5 mm)	46.33	2	< 0.01	_
	Big PS	8.32	2	< 0.05	
	PS (0.25- 0.5 mm)	9.66	2	< 0.01	
	PP fragments	11.99	2	< 0.01	
	Fibres	9.14	8	>0.05	_
Decouvery	Fragments (0.25- 0.5 mm)	14.84	8	>0.05	By treatments
Recovery - efficiency -	PET fragments	18.89	2	< 0.01	(H ₂ O ₂ followed
•	PET fibres	6.49	2	<0.05	by NaCl, ZnCl ₂
(organic soil)	PVC big	25.98	2	< 0.01	and canola oil)
	PVC (0.25- 0.5 mm)	23.06	2	< 0.01	
	PS (0.25- 0.5 mm)	20.64	2	< 0.01	
HQI	Treatments	5.69	5	>0.05	At 40 and 50°C: H ₂ O ₂ , Fentons
	Chemicals	2.96	2	>0.05	and KOH. − NaCl, ZnCl₂ and
	Temperatures	0.02	1	>0.05	canola oil, ultrasound.

Table S 3. Statistical analysis results for Wilcox tests to measure differences in: the amount of organic matter removed from samples of high and low initial organic at 40 and 50°C; the amount of organic removed across all treatments in low and high organic; and the recovery efficiency in inorganic soils using canola oil with and without the use of ultrasound.

			Wilcox Test	:
		W	р	
	Low organic	34	>0.05	Between
Organic matter removed	High organic	60	>0.05	temperatures (40 and 50°C)
	All treatments	104	>0.05	Between low and high organic
Recovery efficiency (inorganic soil)	With and without ultrasound	-1.805	>0.05	Canola oil only

Table S 4. Statistical analysis results for one-way ANOVA's to measure differences in: the amount of organic removed across reagents with and without the inclusion of dispersant; recovery efficiency of total microplastics, fragments and small microplastics from inorganic soils using different density separation treatments; and recovery efficiency of total microplastics, fragments and big microplastics from organic soils using different treatments combining digestion and density separation.

			ANOVA		
		F	df	р	
Organic matter removed	Dispersant vs. no dispersant	20.61	2,12	<0.01	Between reagents (H ₂ O ₂ , Fenton's and KOH)
Recovery	Total microplastics	20.77	2,51	<0.01	Difference between
efficiency	Fragments	7.34	2,51	<0.01	treatments (NaCl,
(inorganic soil)	small	4.11	2,51	<0.05	ZnCl ₂ and canola oil)
Recovery	Total microplastics	7.95	2,51	< 0.01	Difference hetween
efficiency	fragment	8.08	2,45	<0.05	 Difference between
(organic soil)	big	5.83	2,45	<0.01	treatments


Table S 5. Statistical analysis results for t-tests to measure differences in the recovery efficiency in inorganic soils using ZnCl2 and NaCl with and without the use of ultrasound.

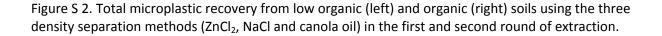

		T Test		
		t	df	р
Ultra sound	ZnCl ₂	1.14	32	>0.05
vs. no ultrasound	NaCl	1.18	34	>0.05

Table S 6. Statistical analysis results for Spearman's Rank correlations to determine relationships between; the amount of clay in inorganic soils and the recovery efficiency; the organic content in a sample and the recovery of total microplastics, fragments, small microplastics, PET fragments and small LDPE.

		Spearman's rank		
		r _s	р	
	Amount of clay in sample vs. recovery of total microplastics	0.04	>0.05	
Organic matter content vs. recovery with canola oil	Total microplastics	0.5	<0.05	
	Fragment	0.57	<0.05	
	small	0.48	<0.05	
	PET fragments	0.69	<0.01	
	Small LDPE	0.55	<0.05	

Figure S 1. Percentage organic matter removed from soils with initially high organic content (~70%) using three digestion methods (Fenton's reagent, hydrogen peroxide and potassium hydroxide) with and without the use of a dispersant (sodium hexametaphosphate)

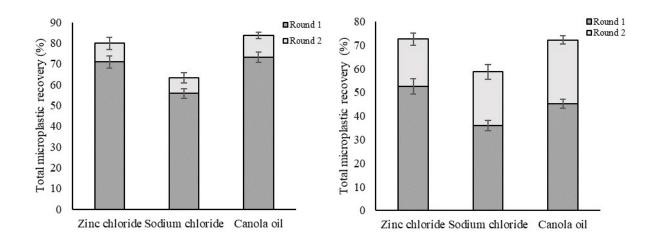


Figure S 3. Total microplastic recovery from inorganic soils using the three density separation methods (ZnCl₂, NaCl and canola oil) with (+US) and without (-US) the inclusion of an ultrasound step

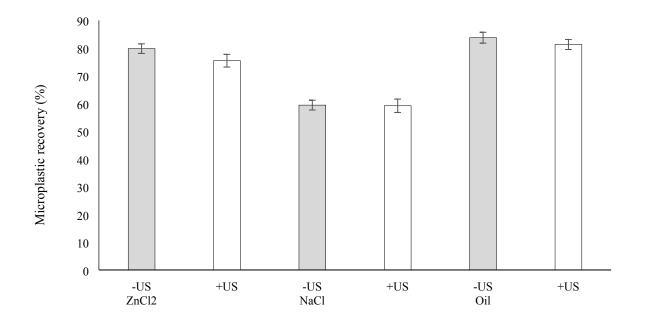


Figure S 4. FT-IR spectra for a sample of microplastic spikes using the experiment when treated with density treatments involving NaCl, ZnCl₂, oil and ultrasound (a. big PVC b. small PVC c. small PS d. small LDPE).

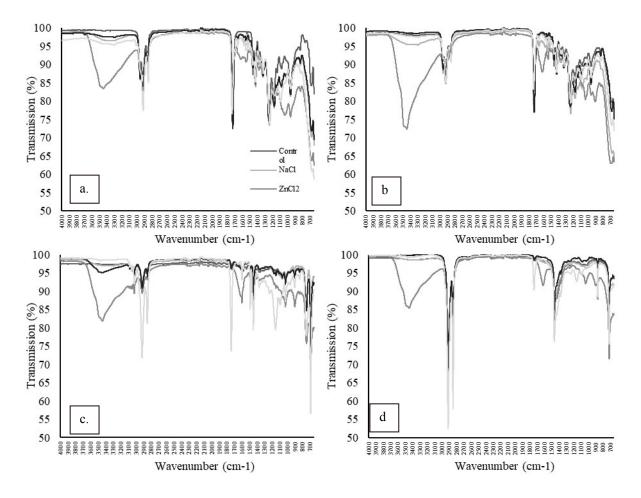
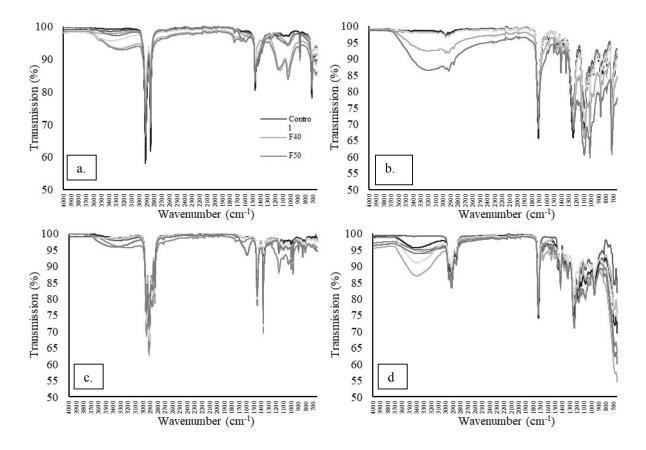



Figure S 5. FT-IR spectra for a sample of microplastic spikes using the experiment when treated with digestion treatments involving Fenton's reagent, potassium hydroxide and hydrogen peroxide at 40 and 50° . (a. small LDPE b. PET fragments c. PP fragments d. large PVC)

