Supplementary information for

ZnO/SiO₂ core/shell nanowires for capturing CpG rich single-stranded DNAs

Marina Musa,¹ Takao Yasui,¹⁻³ Kazuki Nagashima,^{2,4} Masafumi Horiuchi,¹ Zetao Zhu,¹ Quanli Liu,¹ Taisuke Shimada,¹ Akihide Arima,¹ Takeshi Yanagida,^{4,5} Yoshinobu Baba^{1,3,6}

¹Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

²Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

³Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.

⁴Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

⁵Institute of Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan.

⁶Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.

Supplementary Figure 1. STEM-EDS elemental mapping of ZnO/SiO_2 nanowires fabricated with different numbers of ALD cycles. (a) 10 cycles. (b) 25 cycles. (c) 55 cycles. (d) 100 cycles. (e) 200 cycles. Zn, O and Si are respectively highlighted as green, red and orange for single elemental mappings, and Zn and Si are respectively highlighted as green and blue for dual elemental mappings.

Supplementary Figure 2. Capture efficiency of ssDNAs on fused silica substrate (no nanowires), ZnO nanowires and ZnO/SiO₂ nanowires (10 ALD cycles). Experimental conditions: 50 μ L of 50 ng/ μ L DNA solution; flow rate 5 μ L/min.