Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2020

Supporting Information for

Colorimetric glucose sensing with multiple-color changes by using MnO₂ NSs-TMB nanosystem

Rui Qian^a, Dan Gao^{a, *}, Liping Liu^b, Yuyang Jiang^c

^a State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen,

Tsinghua University, Shenzhen, Guangdong 518055, China

^b Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People's Hospital,

Second Clinical Medical College of Jinan University, 1017 North of Dongmen Road,

Shenzhen, Guangdong Province, 518000, China

^c School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China

^{*} Corresponding author. State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, China. E-mail addresses: gao.dan@sz.tsinghua.edu.cn

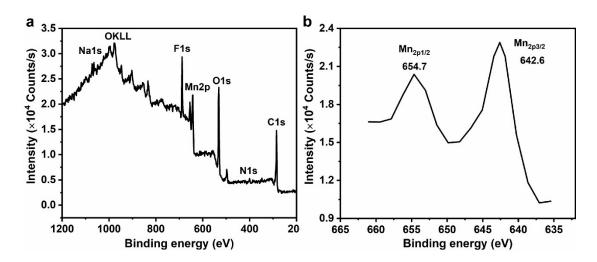


Fig S1. XPS assay of BSA-templated MnO_2 NSs. (a) The XPS pattern of MnO_2

NSs. (b) The XPS pattern of Mn 2p.

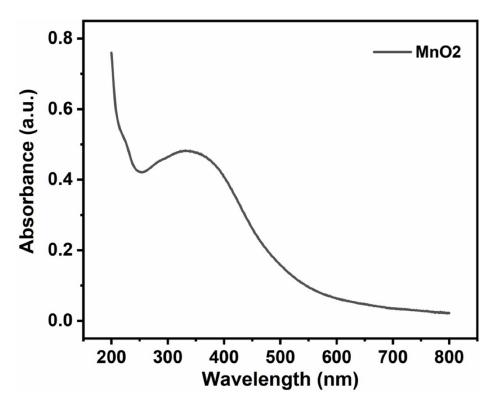


Fig S2. UV-vis absorbance of MnO_2 NSs.

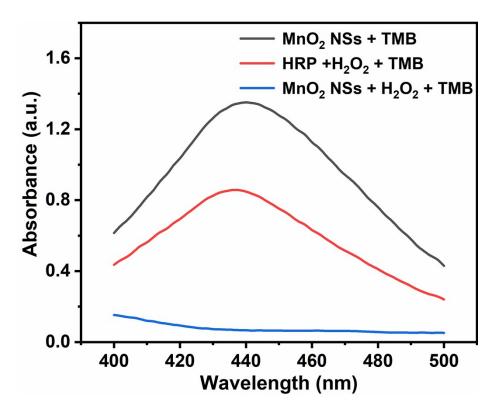


Fig S3. Verification of the peroxidase activity and oxidase-like activity of MnO_2 NSs. The concentrations of H_2O_2 were 5 mM, HRP (100 ug/mL), MnO_2 NSs (0.02 M) and the TMB (0.5 mM).